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A.1 Derivations for identification

One can derive Equation 3 as,

E[Y |X] = g(X; β)

E [E[Y |X]|X ∈ Cm] = E [g(X; β)|X ∈ Cm]

as E[Y |X] = E[Y |X,X ∈ Cm] we can use law of iterated expectation:

E [E[Y |X]|X ∈ Cm] = E [E[Y |X,X ∈ Cm]|X ∈ Cm] = E [Y |X ∈ Cm]

substituting back yields

E [Y |X ∈ Cm] = E [g(X; β)|X ∈ Cm] (A.1)

In case of g(·) is linear, Equation A.1 simplifies further to,

E [Y |X ∈ Cm] = g (E [X|X ∈ Cm] ; β) . (A.2)

This expression is useful in linear models and we utilize this while deriving the asymptotic

properties of the OLS estimator in Section 4.
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In general g(·) can be any nonlinear function. In this case Equation A.2 does not hold.

However, we can still point identify β. Let Xm be the value used for Cm. Split sampling in

this context works as it increases the number of intervals to infinity m → ∞, that allows

us to map the unknown distribution Xm
p→ X. If so, by continuous mapping theorem

g(Xm; β)
p→ g(X; β). To estimate β further regularity conditions are needed, that we

partially discuss in Section 4.4.

To derive Equation 6, one can use the same derivation as before, but instead of conditioning

on X ∈ Cm, we use X ∈ Dl and Y ∈ Cm. Similar manipulations result in,

E [Y ∈ Cm|X ∈ Dl] = E [g(X; β)|X ∈ Dl] (A.3)

Under the assumption g(·) is linear, we can manipulate further to get measurable quantities

on the left-hand side as well. Using the law of iterated expectations yields,

E [E[Y |Y ∈ Cm, X ∈ Dl]|X ∈ Dl] = g (E [X|X ∈ Dl] ; β)∑
l

∑
m

E[Y |Y ∈ Cm, X ∈ Dl] Pr[X ∈ Dl] = g (E [X|X ∈ Dl] ; β)

If g(·) is a nonlinear function, we can use the same argument as before: as m→ ∞, and split

sampling maps the unknown distribution Ym
p→ Y , then we can use the continuous mapping

theorem to identify β.

In case of discretization happens on both sides, Equation A.3 holds, but instead of X ∈ Dl,

one need to condition on X ∈ CmX
and correct conditioning for Y to Y ∈ CmY

. Linear and

nonlinear cases are the same as before with the same modifications in the conditioning and

we need mX ,mY → ∞ and XmX

p→ X and YmY

p→ Y .

A.2 Proofs for convergence in distribution with shift-

ing method

A.2.1 Proof of Proposition 1

Let us define the probability of Z falling into the working sample’s interval CWS
b ,

Pr
(
Z ∈ CWS

b

)
=

S∑
s=1

Pr(Z ∈ Ss)
M∑
m=1

Pr
(
Z ∈ CWS

b | Z ∈ C(s)
m

) ∫ c
(s)
m

c
(s)
m−1

fZ(z)dz . (A.4)
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As S → ∞, ∃cWS
b = a for any a ∈ (al, au), by construction. Furthermore, for any cWS

b ,

∃l ∈ [1, S], m ∈ [1,M ] such that cWS
b = c

(l)
m . Also note that as S → ∞, we need N → ∞

as well. Now consider Pr(Z† < cWS
b ) = Pr(Z† < c

(l)
m ), given Pr(Z ∈ Ss) = 1/S and using

Equation (A.4) gives

Pr(Z† < c(l)m ) =
1

S

S∑
s=1

Pr(Z < c(l)m |Z < c(s)m ) Pr(Z < c(s)m ).

The summation over the different classes in Equation (A.4) is being replaced as we consider

the cumulative probability and no value greater than c
(l)
m will be used as a candidate in the

working sample for cWS
b . Under the shifting method, c

(s)
m ≤ c

(l)
m for s < l and using the

definition of conditional probability gives

Pr(Z† < c(l)m ) =
1

S

S∑
s=1

Pr(Z < c(l)m , Z < c(s)m )

=
1

S

l∑
s=1

Pr(Z < c(l)m , Z < c(s)m ) +
1

S

S∑
s=l+1

Pr(Z < c(l)m , Z < c(s)m )

=
1

S

l∑
s=1

Pr(Z < c(s)m ) +
1

S

S∑
s=l+1

Pr(Z < c(l)m ).

The last line follows from the fact that Pr(Z < a1, Z < a2) = Pr(Z < a1) if a1 < a2, and the

construction of the shifting method allows us to always disentangle the two cases. Since l is

fixed

Pr(Z† < c(l)m ) =
S − l − 1

S
Pr(Z < c(l)m ) +

1

S

l∑
s=1

Pr(Z < c(s)m )

lim
S→∞

Pr(Z† < c(l)m ) =Pr(Z < c(l)m ).

This completes the proof.
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A.2.2 Speed of Convergence for the Shifting Method

The probabilities of the synthetic variable Z† to be fall into CWS
b bin is given by,

Pr
(
Z† ∈ CWS

b

)
=



0, if s = 1 and m = 1,

1
S

∑S
s=2

1
s−1

∫
C

(s)
1 |CWS

b ∈C(s)
1
fZ(z)dz, if s ̸= 1 and m = 1,

1
S2

∑S
s=1

∫
C

(s)
m |CWS

b ∈C(s)
m
fZ(z)dz, if 1 < m < M,

1
S

∑S
s=1

1
S−s+1

∫
C

(s)
M |CWS

b ∈C(s)
M
fZ(z)dz, if m =M .

(A.5)

For each of the conditions in Equation (A.5), the corresponding expression is o(1). To see

this, note that fZ(·) is a density, so the integral is less than 1. First, consider the case of

s ̸= 1 and m = 1,

1

S

S∑
s=2

1

s− 1

∫
C

(s)
1 |CWS

b ∈C(s)
1

fZ(z)dz, ≤
1

S

S∑
s=2

1

s− 1

=
1

S

S∑
s=1

1

s

=
1

S

∫ S

1

1

s
ds

=
logS

S
.

As S → ∞, the ratio in the last line goes to 0. This is expected if the widths of the classes

in the working sample go to zero. This is straightforward, while the probability that an

observation belongs to a point is 0. The same derivations apply to the case when m = M .

Now, consider the case of 1 < m < M ,

1

S2

S∑
s=1

∫
C

(s)
m |CWS

b ∈C(s)
m

fZ(z)dz ≤
1

S2

S∑
s=1

1

=
1

S
,

which also converges to 0 as S → ∞, but at a faster rate than in the previous cases.
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A.2.3 Proof for multivariate distribution

Let us consider the multivariate distribution of Z ∼ fZ(z; al, au), with P variables: Z =

(z1, . . . , zP ). Assume al < au ,∀p, thus the lower boundary is smaller and not equal to

the higher boundary of fZ(·). Furthermore, assume fZ(·) is continuous everywhere. The

discretization process for the first sample in the shifting method, C
(1)
m , is the same as the

discretization process described in Section 2.4, with the boundary points of the multidimen-

sional grid c
(1)
m = (c

(1)
m,1, . . . , c

(1)
m,p, . . . , c

(1)
m,P ) , m = 1, . . . ,M .

The shift size is equal to h = au−al

S(M−1)
, that is in dimension p : hp = (au,p−al,p)/(S(M−1)),

where M is fixed and M,S are the same for all zp. The boundary points for the grid are

given by

c(s)m =


al or −∞, if m = 0,

al + (s− 1)h+ (m− 1)au−al

M−1
if 0 < m < M,

au or ∞, if m =M.

Furthermore let us define the grid itself by C
(s)
m =

[
c
(s)
m−1, c

(s)
m

]
.

The working sample has the following characteristics: the grid points⋃B
b=0 c

WS
b =

⋃S
s=1

⋃M
m=0 c

(s)
m are defined as the union of the split samples’ intervals according

to Equation 10, resulting in BP = (S(M − 1))P grids, as cWS
b =

(
cWS
b,1 , . . . , c

WS
b,P

)
.

This discretization process ensures that for any cWS
b ∃l ∈ [1, S],m ∈ [1,M ], such that

cWS
b = c

(l)
m . Furthermore, as al,p < au,p =⇒ hp > 0 ,∀p it holds that for the grid’s boundary

point vectors c
(s)
m < c

(l)
m for all p, when s < l.

As S → ∞ and N → ∞, while P is fixed, the same proof holds in the multivariate case

as derived in Section A.2.1.

A.2.3.1 One-by-one discretization

A seemingly competitive alternative is to use discretization that discretizes each variable

in Z one by one. However, this method will not ensure convergence in distribution for the

joint fZ(·) that is needed for point identification. To illustrate our argument let us use a

simple illustrative example with P = 2, hence only two variables are discretized, M = 3 and

al = [0, 0], au = [6, 6]. For s = 1, C
(1)
m = {[(0, 0), (2, 2)] , [(2, 2), (4, 4)] , [(4, 4), (6, 6)]}. Let us

use S = 6, thus the shift size h = [0.5, 0.5]. Discretizing the variables independently from

each other will result in fixedM intervals along all other dimensions while learning more and

more along one dimension. This will result in gaps in the domain of fZ(·). Figure A.1 shows

this case, where grey blocks show the mapped/learned parts of the distribution of fZ(·).

5



0.5 1 1.5 2.5 3 3.5 4.5 5 5.5

0.5
1

1.5

2.5
3

3.5

4.5
5

5.5

0 2 4 6
0

2

4

6

Figure A.1: One-by-one variable discretization

A.3 Asymptotic properties of conditional mean esti-

mators for the shifting method

We investigate the asymptotic properties of the estimator for the conditional means while

using the shifting method to map fZ(z; al, au). We restrict our attention to the multivariate

case defined in Section 2.4 and A.2.3. First, we discuss the conditional mean estimator κ̂κκ,

used to estimate β̂ββ, when one or more explanatory variables X are discretized. Secondly,

we investigate the properties of the conditional mean estimator π̂ππ that is used when y is

discretized on the right-hand side. Finally, we cover ψ̂ψψY , ψ̂ψψX , which are used when both

outcome y and explanatory variable X are discretized.

A.3.1 Conditional mean estimator, κ̂κκ

The conditional expectation function for a given grid inC
(s)
m is defined as κ(s,m) = E

[
X|X ∈ C

(s)
m

]
.

κκκ = (κ(1,1), . . . , κ(S,1), . . . , κ(S,m), . . . , κ(S,M))′ is the parameter vector of interest con-

taining each conditional means, E
[
X|X ∈ C

(s)
m

]
, where we condition on the used discretiza-

tion intervals (or grid) C
(s)
m .

Let us define the κ̂κκ, the estimator of κκκ via OLS as,

κ̂κκ =
(
1′
{X∈C(s)

m }
1{X∈C(s)

m }

)−1

1′
{X∈C(s)

m }
X† , (A.6)

where 1{X∈C(s)
m } is a matrix with dimensions (N × SMK) and takes the value of one if
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observations fall into class C
(s)
m . We construct 1{X∈C(s)

m }, such that first, we iterate along s

then along each grid points m = (m1, . . . ,mk, . . . ,mK). The regression equation is given by,

X† = 1{X∈C(s)
m }κκκ+ ηηηκ,

where ηηηκ = (ηκ,1, . . . , ηκ,N)
′ the idiosyncratic term.1

By the weak law of large numbers, κ̂κκ is converging to the true underlying distribution’s

conditional expectations, κ̂κκ → κκκ as limS→∞ FX†(·) = FX(·) under Assumptions 1.a), 1.b)

and Pr(z ∈ Ss) = 1/S as shown in Section A.2.3. The asymptotic properties of κ̂κκ can be

derived by using Lindeberg–Lévy central limit theorem with standard OLS assumptions,

√
N (κ̂κκ− κκκ)

a∼ N (0,ΩΩΩκκκ) .

The asymptotic variance of the OLS estimator is given by

ΩΩΩκκκ = V (ηηηκ)
(
1′
{X∈C(s)

m }
1{X∈C(s)

m }

)−1

,

where V (ηηηκ) is the variance of the corresponding idiosyncratic term. Algorithm A1 describes

the process for creating the working sample, when discretization happens with one or more

right-hand side variables.

Algorithm A1 Discretization of explanatory variables – creation of working sample

1: Estimate κ̂κκ as defined in Equation A.6

2: Set c := 1, s := 1,m := (1, . . . , 1), k := 0, {yWS,XWS,WWS} = ∅ .

3: Assign the conditional mean for X ∈ C
(s)
m from the c’th element of κ̂κκ to all discretized

observations X∗ ∈ C
(s)
m . and the observed values y

(s)
j ,W

(s)
j to the working sample,

{
yWS
i ,XWS

i ,WWS
i

}
:=

{
yWS
i ,XWS

i ,WWS
i ,

N⋃
j=1

(
y
(s)
j , κ̂κκ(c),w

(s)
j | Xj ∈ C(s)

m

)}
.

4: Set c := c+ 1.

5: If s < S, then s := s+ 1 and go to Step 3.

6: If s = S, then s := 1, k := k+1 and set m = m+1{k}, where 1{k} is a (K× 1) indicator

function with value of 1 at element k, otherwise 0. Go to Step 3.

1We use ηηη as the idiosyncratic term for the different cases, hence the subscript to differentiate among the
cases.

7



A.3.2 Conditional mean estimator, π̂ππ

Let π(s,m, l) be the parameter of interest for each conditional mean: E
[
y|y ∈ C

(s)
m ,X ∈ Dl

]
.

We condition the used discretization intervals for y with C
(s)
m and mutually the exclusive

partitions of X denoted by Dl. Note Dl elements are vectors denoting each grid point

for partition l. Overall, we have S × M × LK different conditional expectations defined

by π(s,m, l). Note that L is a fixed number by the researcher, K is also a fixed number of

explanatory variables, asymptotically LK

N
→ 0 is always true, thus the number of observations

in these partitions are asymptotically increasing as well.2

Let us define the πππ = (π(1, 1,1, . . . , π(S, 1,1), . . . , π(S,M,1), . . . , π(S,M, l), . . . , π(S,M,L))′

the vectorized version of π(s,m, l) iterating along all s,m and all partitions l. We propose

π̂ππ, an estimator of πππ via OLS estimator,

π̂ππ =
(
1′
{y†∈C(s)

m ,X∈Dl}
1{y†∈C(s)

m ,X∈Dl}

)−1

1′
{y†∈C(s)

m ,X∈Dl}
y† . (A.7)

Under the same assumptions as for κ̂κκ in Section A.3.1, π̂ππ → πππ. The asymptotic distribution

of the estimator can be derived, similarly. Let us write,

y† = 1{y†∈C(s)
m ,X∈Dl}

πππ + ηηηπ,

where ηηηπ = (ηπ,1, . . . , ηπ,N)
′ is the idiosyncratic term. Under standard OLS assumption, we

have √
N (π̂ππ − πππ)

a∼ N (0,ΩΩΩπππ) .

The variance of the OLS estimator is given by

ΩΩΩπππ = V (ηηηπ)
(
1′
{y†∈C(s)

m ,X∈Dl}
1{y†∈C(s)

m ,X∈Dl}

)−1

,

where V (ηηηπ) is the variance of the idiosyncratic term. Algorithm A2 describes how to create

in practice the working sample that can be used for estimation.

2In finite samples L should be chosen such that there are enough observations in each conditional set.
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Algorithm A2 Discretization of the outcome variable – creation of working sample

1: Partition the data into L mutually exclusive sets based on the values of X.

2: Estimate π̂ππ as defined in Equation A.7

3: Set c := 1, s := 1,m := 1, k := 1, l := (1, . . . , 1), {yWS,XWS} = ∅ .

4: Calculate the sample conditional mean: Ê [X|X ∈ Dl] defined by the partition l.

5: Add the c’th element of the conditional mean estimator π̂ππ and the calculated sample

means of X to the working sample,

{
yWS
i ,XWS

i

}
:=

{
yWS
i ,XWS

i ,

N⋃
j=1

(
π̂ππ(c), Ê [X|X ∈ Dl] | Xj ∈ Dl

)}
.

6: If s < S, then s := s+ 1 and go to Step 4.

7: If s = S, then set s := 1, m := m+ 1 and go to Step 4.

8: If s = S, then set s := 1, m := 1, k := k+1,and set l = l+ 1{k}, where 1{k} is a (K × 1)

indicator function with value of 1 at element k, otherwise 0. and go to Step 4.

A.3.3 Conditional mean estimators, ψ̂ψψY , ψ̂ψψX

In our last case, the parameters of interests are ψY (s,m, l) and ψX(s,m, l). Both represents

conditional expectations for a specified discretized interval for y ∈ C
(s)
mY , grid X ∈ C

(s)
m and

partition W ∈ Dl.

To make our notation more tractable, let us define s = (sY , sX) the split samples used

for y and X. The number of split samples SY and SX can be the same or different (in the

main paper we assumed SY = SX = S. Let m = (mY ,mX), vector for the intervals for y

(scalar) and grids for X (vector with (K × 1) elements). The number of used intervals and

grids may be the same or different (in the paper we assumed MY = MX = M). Finally, l

represents the partition vector for the J variables from W.

Overall for ψY (s,m, l) and ψX(s,m, l), we have SY ×SX×MY ×MK
X ×LJ different cases.

We use vectorized versions for both denoted by ψψψY and ψψψX , that contains these elements

iterating in the order of sy, sm,my,mX , l. We propose estimators ψ̂ψψY and ψ̂ψψX via OLS in the

same spirit as before. To simplify our notation, let 1′
{ψ} = 1′

{y†∈C(s)
m,Y ,X

†∈C(s)
m,X ,W∈Dl}

. The

estimators are,

ψ̂ψψY =
(
1′
{ψ}1{ψ}

)−1
1′
{ψ}y

† ,

ψ̂ψψX =
(
1′
{ψ}1{ψ}

)−1
1′
{ψ}X

† ,
(A.8)

Under similar assumptions as in Sections A.3.1 and A.3.2, ψ̂ψψY → ψψψY and ψ̂ψψX → ψψψX . To
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be specific, we utilize the weak law of large numbers in both cases and limSY →∞ Fy†(·) =

F(·), limSX→∞ FX†(·) = FX(·) under Assumptions 1.a), 1.b) and Pr(y ∈ Ss) = 1/SY ,Pr(X ∈
Ss) = 1/SX as shown in Section A.2.3. Note that K, J are the number of (discretized)

regressors and fixed, as well as L the number of partitions. The asymptotic distribution of

the estimator can be derived, similarly. Let us write,

y† = 1{ψ}ψψψY + ηηηψY
, X† = 1{ψ}ψψψX + ηηηψX

,

where ηηηψY
= (ηψY ,1, . . . , ηψY ,N)

′ and ηηηψX
= (ηψX ,1, . . . , ηψX ,N)

′ are the corresponding idiosyn-

cratic terms. Under standard OLS assumption, we have

√
N
(
ψ̂ψψY −ψψψY

)
a∼ N (0,ΩΩΩψψψY

) ,
√
N
(
ψ̂ψψX −ψψψX

)
a∼ N (0,ΩΩΩψψψX

) .

The variance of the OLS estimators is given by

ΩΩΩψψψY
= V (ηηηψY

)
(
1′
{ψ}1{ψ}

)−1
, ΩΩΩψψψX

= V (ηηηψX
)
(
1′
{ψ}1{ψ}

)−1

where V (ηηηψY
) , V (ηηηψX

) are the variances of the idiosyncratic term. Algorithm A3 describes

how to create in practice a working sample when discretization happens on both sides of the

regression equation.
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Algorithm A3 Discretization on both sides – creation of working sample

1: Partition the W into L mutually exclusive sets.

2: Estimate ψ̂ψψY and ψ̂ψψX as defined in Equation A.8

3: Set c := 1, sY := 1, sX := 1,mY := 1,mX := (1, . . . , 1), k := 0, l := (1, . . . , 1),

j := 0 , {yWS,XWS,WWS} = ∅ .

4: Calculate the sample conditional mean: w̄ := Ê
[
W|y ∈ C

(sy)
my ,X ∈ C

(sx)
mX ,W ∈ Dl

]
5: Add the c’th element of the conditional mean estimators ψ̂ψψY , ψ̂ψψX and the calculated

sample means of W to the working sample,

{
yWS
i ,XWS

i ,WWS
i

}
:=
{
yWS
i ,XWS

i ,WWS
i

N⋃
j=1

(
ψ̂ψψY (c), ψ̂ψψX(c), w̄ | yj ∈ C(sy)

my
,Xj ∈ C(sx)

mX
,Wj ∈ Dl

)}
.

6: If sY < SY , then sY := sY + 1 and go to Step 4.

7: If sY = SY , then set sY := 1, sX := sX + 1 and go to Step 4.

8: If sX = SX , then set sY := 1, sX := 1, mY := mY + 1 and go to Step 4.

9: If my =MY , then set sY := 1, sX := 1,mY := 1, k := k+1, mX := mX + 1{k} and go to

Step 4.

10: If k = K − 1, then set sY := 1, sX := 1,mY := 1, k := 0, mX := (1, . . . , 1), j := j + 1,

l := l+ 1{j} and go to Step 4.

A.4 Magnifying Method

The magnifying method magnifies specific parts of the underlying variable’s domain. The

interval size for each split sample depends on the number of split samples (S) and the

number of original intervals (M). As the number of split samples increases, the interval

widths decrease, which is the main mechanism for uncovering the unknown distribution.

Figure A.2 shows the main idea of the magnifying method for the case of M = 3, S = 4.
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Figure A.2: The magnifying method

As seen in Figure A.2, there are two types of intervals: i) Around the boundaries of Z,

the first and last interval widths are changing and in general they do not decrease as we

increase the number of split sizes. Observations that fall into these intervals are called “non-

directly-transferable observations” or NDTOs. ii) All remaining intervals have widths that

are decreasing as S increases. Observations falling into these categories are called “directly-

transferable observations” or DTOs. These DTOs can then be used to map the original

distribution.3

To explore the properties of the magnifying method, let us establish the connection

between the number of magnified intervals in the working sample (B), and the number of

split samples (S) and intervals (M),

B = S(M − 2) + 2 .

Note that we have 2 split samples (first and last respectively), where we magnify intervals

around the boundary of the domain. Here, we capture M − 1 intervals of equal size, for all

the other S − 2 split samples, there are M − 2 intervals.

The widths of the intervals in the working sample are given by,

h =
au − al

S(M − 2) + 2
.

Intuitively, the magnifying method works as if we increase the number of split samples,

the magnified interval widths go to zero (h → 0 as S → ∞). Note however, to have

3Note that, the first and last split samples are slightly different. Their observations from first/last intervals

(c
(1)
1 and c

(S)
M ) are also DTOs, as the interval widths are decreasing in S similarly to the intervals that are

not at the boundary points (c
(s)
m , ∀ 1 < s < S, 1 < m < M).

12



this property we will fix the upper and lower bounds of the support for the split samples

(al = cWS
0 = c

(s)
0 ; au = cWS

B = c
(s)
M , ∀s), thus make sure that the discretized domain does not

have infinite support. Next, we derive the boundary points for each magnified split sample

and show how and under what assumptions the working sample converges in distribution to

the underlying unknown distribution.

Algorithm A4 Magnifying method – creation of the split samples

1: For any given S and M . Set

B =S(M − 2) + 2

h =
au − al
B

s =1.

2: Set c
(s)
0 = al and c

(s)
M = au.

3: If s = 1, then set
c
(s)
1 = c

(s)
0 + h,

else set
c
(s)
1 = c

(s−1)
M−1 .

4: Set c
(s)
m = c

(s)
m−1 + h for m = 2, . . . ,M − 1.

5: If s < S then s := s+ 1 and goto Step 2.

The boundary points for each split sample can be derived as

c(s)m =



al or −∞ if m = 0,

al +mh if 0 < m < M and s = 1,

al + h [(s− 2)(M − 2) +M +m− 2] if 0 < m < M and s > 1,

au or ∞ if m =M.

(A.9)

The intuition behind this is that on the boundaries of the support, the split samples take

the values of the lower and upper bounds. For the first split sample, one needs to shift

the boundary points m times. However, for the other split samples, one needs to push by

h(M − 1) times to shift through the first questionnaire and then h(M − 2) to shift through

each split sample in between s = 2 and s = S − 1, s − 2 times. Deriving this process

algebraically will result in the above expression.4 Algorithm A4 shows how to create the

4There is an alternative way to formalize the boundary points, when one starts from au. The formalism
will result in the same conclusions.
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boundary points for the split samples in the case of the magnifying method.

The working sample’s boundary points are given by the unique boundary points from

the split samples, which leads to

cWS
b = al + bh = al + b

au − al
S(M − 2) + 2

.

To show how and why the magnifying method works, let us derive the different interval

widths for each split samples’ interval, defined by Equation A.9. Let ||C(s)
m || = c

(s)
m − c

(s)
m−1

be the m-th interval width, then for the split samples which are in-between the boundaries

(1 < s < S) and substituting for h, we can write

||C(s)
m || =


(au − al)

(
s(M−2)+2
S(M−2)+2

+ 1−M
S(M−2)+2

)
if m = 1, 1 < s < S,

au−al
S(M−2)+2

if 1 < m < M, 1 < s < S,

(au − al)
(
1− s(M−2)+1

S(M−2)+2

)
if m =M, 1 < s < S .

We can also define the interval widths for the first and last split samples as

||C(1)
m || =


au−al

S(M−2)+2
if 1 ≤ m < M,

(au − al)
(
1− M−1

S(M−2)+2

)
if m =M,

||C(S)
m || =

(au − al)
(
1− M−1

S(M−2)+2

)
if m = 1,

au−al
S(M−2)+2

if 1 < m ≤M.

Note that ||C(s)
m || ≤ ||C(s)

1 || and ||C(s)
m || ≤ ||C(s)

M ||. Formally, let us define ζ := {C(s)
m | 1 <

m < M, 1 < s < S,C
(1)
m | 1 ≤ m < M,C

(S)
m | 1 < m ≤ M} as the set of intervals which have

the interval width au−al
S(M−2)+2

.

An interesting insight that we can write Pr
(
(z − z(s))2|z ∈ ζ ≤ (z − z(s))2 | z ̸∈ ζ

)
= 1,

which is true if and only if, E [Z] = E
[
Z(s)

]
,∀Z. One example is when Z is uniformly

distributed.

Now, let us check the limit in the number of split samples. We end up with the following

limiting cases

lim
S→∞

(
||C(s)

m ||
)
=

0 if 1 ≤ m < M, 1 < s < S,

au − al if m =M, 1 < s < S;

14



and for the first and last split sample

lim
S→∞

(
||C(1)

m ||
)
=

0 if 1 ≤ m < M,

au − al if m =M,

lim
S→∞

(
||C(S)

m ||
)
=

au − al if m =M,

0 if 1 < m ≤M.

This formulation takes al as the starting point and expresses the boundary points given al.

However, we can use au as the starting point as well to shift the boundary point. This

implies that the convergences on the bounds (||C(s)
1 ||, ||C(s)

M ||) will change, resulting in those

parts not converging to 0 in general.

Now, it is clear that there are two types of observations: The first type is Z
(s)
i ∈ ζ.

These observations are the closest to the underlying unknown observations, as these have

the feature of limS→∞ ||C(s)
m || = 0. Moreover, these observations have the same interval width

as the working sample’s intervals and each of them can be directly linked to a certain working

sample interval by design. Formally, ∃C(s)
m

∼= CWS
b such that c

(s)
m = cWS

b , c
(s)
m−1 = cWS

b−1. We

call these values ‘directly transferable observations ’, as we can directly transfer and use them

in the working sample. These observations are denoted by ZDTO
i := Z

(s)
i ∈ ζ, ∀s, and the

related random variable by ZDTO.

The second type of observation is all others for which none of the above is true. We call

them ‘non–directly transferable observations ’. Algorithm A5 describes how to construct the

working sample when using only the directly transferable observations.

Algorithm A5 Magnifying method - creation of the ‘DTO’ working sample

1: Set m = 1, s = 1 and ZDTO
i = ∅.

2: If C
(s)
m ∈ ζ, add observations from interval C

(s)
m to the working sample:

ZDTO
i :=

{
ZDTO
i ,

N⋃
j=1

(
Z

(s)
j ∈ C(s)

m | C(s)
m ∈ ζ

)}

3: If s < S, then s := s+ 1 and go to Step 2.

4: If s = S, then s := 1 and set m = m+ 1 and go to Step 2.

As a next step let us derive the probability that a directly transferable observation lies in a

15



given interval of the working sample. Based on Equation A.4,

Pr
(
Z ∈ CWS

b

)
= Pr(Z ∈ Ss)

∫ cWS
b

cWS
b−1

fZ(z)dz .

Note, here we can use the fact that individual i being assigned to a split sample s is inde-

pendent of i choosing the interval with class value Z
(s)
m .

An important requirement of the magnifying method is that we want to ensure that in

each interval in the working sample, there are directly transferable observations. For each

split sample, the expected number of directly transferable observations is

E(NWS
b ) = E

(
N∑
i=1

1{Zi∈CWS
b }

)

= N Pr(Z ∈ Ss)
∫ cWS

b

cWS
b−1

fZ(z)dz.

(A.10)

Following from Equation A.10, consider the following assumptions,

Assumption A3. Let Z be a continuous random variable with probability density function

fZ(z) with S, N and C
(s)
m follow the definitions above. We require that all split samples will

have non-zero respondents, Pr (Z ∈ Ss) > 0.

Assumption A3 ensures utilization of all split samples, i.e. each split sample will have non-

zero respondents. Similarly, for the shifting case, we need assumption 1a), which ensures

that the number of respondents will always be higher than the number of split samples,

and assumption 1b), that imposes a mild assumption on the underlying distribution. (The

support of the random variable is not disjoint, thus
∫ cWS

b

cWS
b−1

fZ(z)dz > 0.) These assumptions

allow us to establish proposition 1, which establishes convergence in distribution.

Proposition 1. Under Assumptions 1, 1 and A3,

1.

E(NWS
b ) > 0

2.

Pr

(
b∑
i=1

NWS
b > 0

)
→ 1.

3.

Pr
(
ZWS
DTO < a

)
= Pr (Z < a) for any a ∈ [al, au]

16



Proof:

The probabilities of the unobserved variable to fall into class CWS
b ,

Pr
(
Z ∈ CWS

b

)
= Pr(Z ∈ Ss)

∫ cWS
b

cWS
b−1

fZ(z)dz .

where, Ss is the set for split sample s, and we used the fact that individual i being assigned

to a split sample s is independent of i. This is satisfied if the discretization schemes are

randomly assigned to observations. To ensure that in each interval from the working sample,

there are directly transferable observations, let us write

E(NWS
b ) = E

(
N∑
i=1

1{Zi∈CWS
b }

)

= N Pr(Z ∈ Ss)
∫ cWS

b

cWS
b−1

fZ(z)dz.

(A.11)

We can reformulate Equation A.11 by considering the number of observations up to a certain

boundary point, rather than the number of observations in a particular class. That is

Pr

(
E

[
b∑
i=1

NWS
i

]
> 0

)
→ 1 .

This gives the possibility to replace
∫ cWS

b

cWS
b−1

fZ(z)dz with
∫ cWS

b

cWS
0

fZ(z)dz. Since this is a CDF,

and hence a non-decreasing function, it effectively shows that each interval has non-empty

observations:

E

(
b∑
i=1

NWS
i

)
=E

(
N∑
i=1

1{Zi<cWS
b }

)

=N Pr(Z ∈ Ss)
∫ cWS

b

cWS
0

fZ(z)dz.

Next, we need to show that this is an increasing function in CWS
b . As N → ∞, under the

assumption that Pr(Z ∈ Ss) = 1/S and S/N → d with d ∈ (0, 1) – which is satisfied when

S = dN ,

lim
n→∞

E

(
b∑
i=1

NWS
i

)
=N Pr(Zi < CWS

b )

=
1

d

∫ CWS
b

CWS
0

fZ(z)dz.

Note that the derivative with respect to CWS
b is 1

d
fZ
(
CWS
b

)
> 0, so the expected number
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of observations in each class is not 0. This completes our proof in the univariate case. We

leave the proof for multivariate cases to future research.

A.4.1 Derivation for Estimation –using NDTOs

Let us consider the placement of the non-directly transferable observations. We have seen

that these observations belong to intervals, where the interval widths do not converge to

zero. One way to proceed is to remove them completely so that they do not appear in the

working sample. In practice, it seems that too many could fall into this category, resulting

in a large efficiency loss. Another approach is to use the information available for these

observations namely, the known boundary points for these values. Then we could use all the

directly transferable observations from the working sample to calculate specific conditional

averages for all non-directly transferable observations and replace them with those values.

Let us denote a new variable ZWS
i,ALL that represents all the directly transferable observations

and the replaced values for non-directly transferable observations.

For simplicity let us consider the case, when discretization happens with the explanatory

variable. In this case, we simply need to calculate the conditional expectation that the

underlying variable falls into the interval where NDTOs are. The other two cases follow the

same logic but use different conditioning.

Let us formalize the non-directly transferable observations as Z
(s)
i ∈ Cχ, where

Cχ :=
⋃
s,m

C(s)
m

⋂
b

CWS
b = ζ∁

is the set for non-directly transferable observations from all split samples, with χ = 1, . . . , 2(S − 1).

We can then replace Z
(s)
i ∈ Cχ with ν̂χ, which denotes the sample conditional averages

ν̂χ =

(
N∑
i=1

1{ZDTO
i ∈Cχ}

)−1 N∑
i=1

1{ZDTO
i ∈Cχ}Z

DTO
i .

Let us introduce ZNDTO
i as the variable which contains all the replaced values with ν̂χ, ∀Z(s)

i ∈
Cχ. This way we can create a new working sample as ZALL

i := {ZDTO
i , ZNDTO

i }, which con-

tains information from both types of observations.

Under the WLLN and the same assumptions needed for the magnifying method, it is

straightforward to show, ν̂χ → E(Z|Z ∈ Cχ) , as N,S → ∞. Algorithm A6 shows how to

replace NDTO values with the appropriate conditional expectation estimators.
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Algorithm A6 The magnifying method - creation of ‘ALL’ working sample

1: Let, ZALL
i := {ZDTO

i }
2: Set, m = 1, s = 1
3: If C

(s)
m ∈ Cχ, then calculate ν̂χ and expand the working sample as,

ZALL
i :=

{
ZALL
i ,

N⋃
j=1

ν̂χ |
(
Z

(s)
j ∈ C(s)

m | C(s)
m ∈ Cχ

)}

4: If s < S, then s := s+ 1 and go to Step 3.
5: If s = S, then s := 1 and set m = m+ 1 and go to Step 3.

We can obtain the asymptotic standard errors of this estimator as if these are large, the

replacement might not be favorable, as it induces more uncertainty relative to the potential

loss of efficiency by not including all the observations. To obtain the standard errors, one

can think of ν̂χ as an LS estimator, regressing 1{ZWS
i,DTO∈Cχ} on ZDTO

i . Here 1{ZDTO
i ∈Cχ} is a

vector of indicator variables, created by 2(S − 1) indicator functions: It takes the value of

one for the directly transferable observations, which are within Cχ.
5 We can now write the

following:

ZDTO
i = νννχ1{ZDTO

i ∈Cχ} + ηi,

where νννχ stands for the vector of νχ,∀χ. The LS estimator of νννχ is

ν̂ννχ =
(
1′
{ZDTO

i ∈Cχ}1{ZDTO
i ∈Cχ}

)−1

1′
{zDTO

i ∈Cχ}Z
DTO
i ,

and under the standard LS assumptions, we can write

√
NDTO (ν̂ννχ − νννχ)

a∼ N (0,ΩΩΩχ) ,

where νννχ = E(Z|Z ∈ Cχ),∀χ. The variance of the OLS estimator is

ΩΩΩχ = V (ηi)
(
1′
{xWS

i,DTO∈Cχ}1{xWS
i,DTO∈Cχ}

)−1

.

Using this result, we may decide whether to replace NDTOs or not.

5The indicator variables are not independent of each other, while the non-transferable observation intervals
(Cχ) overlap each other.
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A.5 Estimation with discretized regressors6

In this section, first, we analyze the bias and consistency of OLS estimation for β in the

univariate case, when the explanatory variable is discretized. We investigate properties

when N → ∞ and when M → ∞. The last implies we observe each value directly resulting

in a consistent OLS estimator as we outlined in Section 2. These exercises are helpful to see

how these results generalize in the multivariate case discussed in Section A.5.4. As a last

subsection, we investigate the bias in the panel set up in Section A.5.6.

Recall the data-generating process is assumed to be

Yi = X ′
iβ + ui (A.12)

with the linear regression model using the discretized version of Xi namely,

Yi = X∗′
i β

∗ + ui (A.13)

It is also assumed there is a known support [al, au] for Xi with known boundaries (Cm), and

let vm from Equation 1 be any value X∗
i take, typically the mid-point.

Let Nm be the number of observations in each class Cm, that is Nm =
∑N

i=1 1{Xi∈Cm},

where 1{X∈Cm} denotes the indicator function. When X has a cumulative distribution (cdf)

FX(·),

E(Nm) = E

(
N∑
i=1

1{Xi∈Cm}

)
= N

∫
Cm

fX(x) dx

= N Pr(cm−1 < X = x ≤ cm),

using the independence assumption. Note, when X has a uniform distribution, we have

E(Nm) = N/M for all m = 1, . . . ,M .

6We acknowledge the work of Balázs Kertész from this section on the expected value of β̂∗
OLS and on N

and M (in-)consistency results.
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The OLS estimator can expanded as,

β̂∗
OLS = (X∗′X∗)

−1
(X∗′Y )

=
v1

(∑N1

i=1 Yi

)
+ v2

(∑N1+N2

i=N1+1 Yi

)
+ · · ·+ vM

(∑NM

i=N−NM+1 Yi

)
N1v21 +N2v22 + · · ·+NMv2M

=
v1

(∑N1

i=1 βXi + ui

)
+ · · ·+ vM

(∑NM

i=N−NM+1 βXi + ui

)
N1v21 + · · ·+NMv2M

=
v1

[∑N
i=1 1{Xi∈C1}(βXi + ui)

]
+ · · ·+ vM

[∑N
i=1 1{Xi∈CM}(βXi + ui)

]
N1v21 + · · ·+NMv21

=

∑M
m=1 vm

[∑N
i=1 1{Xi∈Cm}(βXi + ui)

]
∑M

m=1Nmv2m

Using the expression above, we can get the following general formula for the expected value

of the OLS estimator,

E
(
β̂∗
OLS

)
= E


∑M

m=1 vm

[∑N
i=1 1{Xi∈Cm} (β(X

∗
i + ξi) + ui)

]
∑M

m=1Nmv2m


= E


∑M

m=1 vm

[
β
(∑N

i=1 1{Xi∈Cm}X
∗
i +

∑N
i=1 1{Xi∈Cm}ξi

)
+
∑N

i=1 1{Xi∈Cm}ui

]
∑M

m=1Nmv2m


= βE

{∑M
m=1 vm

∑N
i=1 1{Xi∈Cm}X

∗
i∑M

m=1Nmv2m

}
+ βE

{∑M
m=1 vm

∑N
i=1 1{Xi∈Cm}ξi∑M

m=1Nmv2m

}

+ E

{∑M
m=1 vm

∑N
i=1 1{Xi∈Cm}ui∑M

m=1Nmv2m

}

= β + βE

{∑M
m=1 vm

∑N
i=1 1{Xi∈Cm}ξi∑M

m=1Nmv2m

}

= β + βE

{∑M
m=1 vmNmυ

m∑M
m=1Nmv2m

}
. (A.14)

where the discretization error ξi = Xi−X∗
i for each observation by setting the possible answer

values at X∗
i . The derivation above is based on the disturbance term ui being independent

of regressor Xi and E(ui) = 0 for all i = 1, . . . , N . The last inference uses the fact that

the errors ξi have the same conditional distribution over the class Cm, υ
m d

= ξi|Cm for all
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v1 v2

E(X|C1) E(X|C2)

E(ξ1) = 0 E(ξ2) = 0
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E(X|C1) E(X|C2)

E(ξ1) ̸= 0 E(ξ2) ̸= 0

Xi

Figure A.3: The difference between uniform (left panel) and general distributions (right
panel)

m = 1, . . . ,M and i = 1, . . . , N . Importantly, the second term in Equation (A.14) does

not vanish in general, since υm|Cm is not independent of Nm|Cm, υm|Cm ̸⊥⊥ Nm|Cm nor

E(ξi|Cm) = E(υm) = 0 (see Figure A.3, right panel for illustrative explanation). The former

issue can be eliminated by conditioning on the underlying distribution of Xi. Conditional on

the distribution Xi and the class Cm, the number of observations in the class and assuming

that the errors are independent of each other, Nm|Xi, Cm ⊥⊥ υm|Xi, Cm, but knowing the

underlying distribution makes the problem trivial. Nonetheless, because of both issues, the

‘naive’ OLS estimator is biased.

Note that the uniform distribution, however, turns out to be a special case. Let us assume

that Xi ∼ U(al, au) for all i = 1, . . . , N , then both of the above disappear (see the left panel

in Figure A.3) if we are using the class midpoints. The first problem is resolved, because, in

the case of the uniform distribution, both the number of observations Nm in each class Cm

and the error term υm are independent of the regressor’s Xi distribution, while the second

problem does not appear trivially, since now the class midpoints are proper estimates of the

regressor’s Xi expected value in the class Cm. From Equation (A.14), we obtain that

E
(
β̂∗
OLS

)
= β + βE

{∑M
m=1 vmNmυ

m∑M
m=1Nmv2m

}
= β,

where υm is a uniformly distributed random variable with zero expected value, E(υm) = 0 for

all m = 1, . . . ,M . Hence, in the case of uniform distribution, unlike for other distributions,

the OLS is unbiased.
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A.5.1 N (in)consistency

This subsection considers the large sample properties of the estimator. First, assume that

plimN→∞
∑N

i=1(1{Xi∈Cm}ui) = 0, in other words, that the class set selection is independent

of the disturbance terms, and also that with sample size N the number of classes M is fixed.

Then

plim
N→∞

β̂∗
OLS = plim

N→∞

∑M
m=1 vm

[∑N
i=1 1{Xi∈Cm}(βXi + ui)

]
∑M

m=1Nmv2m

=

∑M
m=1 vm

[
plimN→∞

∑N
i=1 1{Xi∈Cm}(βXi + ui)

]
∑M

m=1 v
2
m plimN→∞Nm

=

∑M
m=1 vm

[
plimN→∞ β

∑N
i=1 1{Xi∈Cm}Xi

]
∑M

m=1 v
2
m plimN→∞Nm

= β

∑M
m=1 vm

[
plimN→∞

∑N
i=1 1{Xi∈Cm}Xi

]
∑M

m=1 v
2
m plimN→∞Nm

. (A.15)

Define Xm =
∑N

i=1 1{Xi∈Cm}Xi, then X
m sums the truncated version of the original random

variables Xi on the class Cm, Xm
d
= Xi|Cm, for all m = 1, . . . ,M , therefore its asymptotic

distribution can be calculated by applying the Lindeberg-Levy Central Limit Theorem,

Xm/Nm
a∼ N

(
E(Xm),V(Xm)/Nm

)
.

The β̂∗
OLS estimator is consistent if and only if the probability limit in Equation (A.15)

equals β. To give a condition for consistency, first, we rewrite the previous Equation (A.15)

in terms of the error terms ξi,

plim
N→∞

(
β̂∗
OLS − β

)
=
β
(∑M

m=1 vm

[
plimN→∞

∑N
i=1 1{Xi∈Cm}Xi

]
−
∑M

m=1 v
2
m plimN→∞Nm

)
∑M

m=1 v
2
m plimN→∞Nm

=
β
∑M

m=1 vm

[
plimN→∞

∑N
i=1 1{Xi∈Cm}(Xi −X∗

i )
]

∑M
m=1 v

2
m plimN→∞Nm

=
β
∑M

m=1 vm

[
plimN→∞

∑N
i=1 1{Xi∈Cm}ξi

]
∑M

m=1 v
2
m plimN→∞Nm

,
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where the asymptotic distribution of the sum of errors in class Cm, ξ
m =

∑N
i=1 1{Xi∈Cm}ξi,

m = 1, . . . ,M , can be given by

ξm/Nm
d
= Xm/Nm − vm

a∼ N
(
E(Xm)− vm,V(X

m)/Nm

)
.

plim
N→∞

(
β̂∗
OLS − β

)
=

plimN→∞ β
∑M

m=1 vmξ
m

plimN→∞
∑M

m=1 v
2
mNm

=
plimN→∞O(N)β

∑M
m=1 vmξ

m/Nm

plimN→∞O(N)
∑M

m=1 v
2
m

=
β
∑M

m=1 vm plimN→∞ ξm/Nm∑M
m=1 v

2
m

O(N)

=
β
∑M

m=1 vm {E(zm)− vm}∑M
m=1 v

2
m

O(N). (A.16)

The last step in the above derivation can simply be obtained from the definition of the plim

operator, i.e., for any ε > 0 given. Therefore, to obtain the (in)consistency of the OLS

estimator β̂∗
OLS in the number of observations N , we only need to calculate the expected

value of the truncated random variable Xm, m = 1, . . . ,M and check whether the expression

(A.16) equals 0 to satisfy a sufficient condition.

plim
N→∞

ξm = E(Xm)−Xm

⇐⇒ lim
N→∞

Pr (|ξm − {E(Xm)−Xm}| > ε)

= lim
N→∞

Fξm (−ε+ E(Xm)−Xm) [1− Fξm (ε+ E(Xm)−Xm)] = 0.

The convergence holds because, for any given δ > 0, there is a threshold N0 for which

the term in the limit becomes less than δ. This can be seen from Fξm(·) being close to a

degenerate distribution above a threshold number of observations N0, or intuitively since the

variance of the sequence of random variables ξm collapses in N , its probability limit equals

its expected value.

Let us apply these results to the uniform distribution. In this case, there is no consistency

issue because the class midpoints coincide with the expected value of the truncated uniform

random variable in each class, making the expression (A.16) zero, hence the OLS estimator

is consistent.
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C1 C2

v1 < 0 v2 > 0

E(X|C1) E(X|C2)

E(ξ1) > 0 E(ξ2) < 0

Xi

Figure A.4: The estimator is inconsistent even in case of symmetric distributions (see Equa-
tion (A.16)).

Note that the consistency of the OLS estimator is not guaranteed even in the case of

symmetric distributions and symmetric class boundaries. After appropriate transformations

(e.g., demeaning), it can be seen that the sign of the differences between the expectation of

the truncated random variables Xm and the class midpoints is opposite to the sign of the

class midpoints on either side of the distribution, which implies negative overall asymptotic

bias in N (see Figure A.4).

In the case of a (truncated) normal variable, for example, we need to substitute the

expected value of the truncated normal random variable Xm for each m = 1, . . . ,M in the

consistency formula (A.16). As a result, the difference between the expectation and the class

midpoints, in general, is not zero for all m, hence the formula cannot be made arbitrarily

small. Therefore, the OLS estimator becomes inconsistent in N .

So far we have focused on the estimation of β in Equation (A.13). But how about γ? It

can be shown that the bias and inconsistency presented above are contagious. Estimation of

all parameters of a model is going to be biased and inconsistent unless the measurement error

and X are orthogonal (independent), which is quite unlikely in practice. This is important

to emphasize: a single interval-type variable in a model is going to infect the estimation of

all variables of the model.

A.5.2 M Consistency

Let us see the case when N is fixed but M → ∞. Now, we may have some intervals that

do not contain any observations, while others still do. Omitting, however, empty intervals

does not cause any bias because of our iid assumption. Furthermore, while we increase the

number of intervals, the size of the intervals itself is likely to shrink and become so narrow

that only one observation can fall into each. In the limit, we are going to hit the observations

with the interval boundaries. To see that, we derive the consistency formula in the number
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of intervals M assuming that plimM→∞
∑

{m:Cm ̸=∅,m=1,...,M} vmuim = 0, or with re-indexation

plimM→∞
∑N

i=1 vmi
ui =

∑N
i=1 ziui = 0, which should hold in the sample and is a stronger

assumption than the usual plimN→∞
∑N

i=1Xiui = 0:

plim
M→∞

(
β̂∗
OLS − β

)
= plim

M→∞

∑M
m=1 vm

[∑N
i=1 1{Xi∈Cm}(βXi + ui)

]
∑M

m=1Nmv2m
− β

= plim
M→∞

∑
{m:Cm ̸=∅,m=1,...,M} vm

[∑N
i=1 1{Xi∈Cm}(βXi + ui)

]
∑

{m:Cm ̸=∅,m=1,...,M}Nmv2m
− β

= plim
M→∞

∑
{m:Cm ̸=∅,m=1,...,M} vm(βXim + uim)∑

{m:Cm ̸=∅,m=1,...,M} v
2
m

− β

= plim
M→∞

β

{∑
{m:Cm ̸=∅,m=1,...,M} vmXim∑

{m:Cm ̸=∅,m=1,...,M} v
2
m

− 1

}

= plim
M→∞

β

{∑N
i=1 vmi

Xi∑N
i=1 v

2
mi

− 1

}

= β

{∑N
i=1 plimM→∞ vmi

Xi∑N
i=1 plimM→∞ v2mi

− 1

}

= β

{∑N
i=1XiXi∑N
i=1Xi

2
− 1

}
= 0,

where the index im ∈ {1, . . . , N} denotes observation i in class m (at the beginning there

might be several observations that belong to the same class m), and index mi ∈ {1, . . . ,M}
denotes the class m that contains observation i (at the and of the derivation one class m

includes only one observation i). Note that the derivation does not depend on the distribution

of the explanatory variable X, so consistency in the number of classes M holds in general.

Let us also note, however, that this convergence in M is slow. Also, as M → ∞, the class

sizes go to zero, and the smaller the class sizes the smaller the bias.

A.5.3 Some Remarks

The above results hold for much simpler cases as well. If instead of model (A.13) we just

take the simple sample average of X, X̄ =
∑

iXi/N , then X̄∗ =
∑

iX
∗
i /N is going to be a

biased and inconsistent estimator of X̄.

The measurement error due to discretized variables, however, not only induces a corre-

lation between the error terms and the observed variables, but it also induces a non-zero
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expected value for the disturbance terms of the regression in (A.13). Consider a simple

example where there is an unobserved variable Xi with an observed discretized version:

X∗
i =

v1 if c0 ≤ Xi < c1,

v2 if c1 ≤ Xi < c2,
(A.17)

and

Yi = Xiβ + εi. (A.18)

Using the discretized variable means:

Yi = X∗
i β + (Xi −X∗

i )β + ui (A.19)

and

E [Xi −X∗
i ] =E(Xi)− E(X∗

i )

=E(Xi)− E [X11(c0 ≤ Xi < c1) +X21(c1 ≤ Xi < c2)]

=E(Xi)− v1 Pr(c0 ≤ Xi < c1)−X2 Pr(c1 ≤ Xi < c2).

The last line above is not zero in general. Thus, it would induce a bias in the estimator

if the regression did not include an intercept. This result generalizes naturally to variables

with multiple class values.

A.5.4 Estimation in multivariate regression

Let us generalise the problem and re-write it in matrix form. Consider the following linear

regression model:

y = Xβββ +Wγγγ + εεε , (A.20)

where X and W are N ×K and N × J data matrices of the explanatory variables, y is a

N×1 vector containing the data of the dependent variable, εεε is a N×1 vector of disturbance

terms, and finally βββ and γγγ are K × 1 and J × 1 parameter vectors.

X is not observed, only its discretized version X∗ is. Define the MK ×K matrix as

V =


V1 0 . . . . . .

0 V2 0 0
... . . .

. . .
...

. . . . . . 0 VK

 ,

27



where Vi = (vi1, . . . , viM)′ contains the values for variable i. Let E = {eki}, where k =

1, . . . K and i = 1, . . . , N such that

eki =


1(ck0 ≤ xki < ck1)

1(ck1 ≤ xki < ck2)
...

1(ckM−1 ≤ xki < ckM)

 ,

where xki denotes the value of the ith observation from the explanatory variable xk.

This implies E is a MK × N matrix since each entry eki is a M × 1 vector. Following

the definition of X∗
i in the paper, we can rewrite X∗ = E′V.

A.5.5 The OLS Estimator

From Equation (A.20), consider the regression based on the observed data:

y = X∗βββ +Wγγγ + (X−X∗)βββ + εεε , (A.21)

then the OLS estimator for βββ is

β̂ββ = (X∗′MXX
∗)

−1
X∗′MXy ,

where MW = I−W(W′W)−1W′ defines the usual residual maker. The standard derivation

shows that

β̂ββ = (V′EMWE′V)
−1

V′EMWXβββ + (V′EMWE′V)
−1

V′EMWεεε. (A.22)

This implies OLS is unbiased if and only if (V′EMWE′V)−1V′EMWX = I. This al-

lows us to investigate the bias analytically by examining the elements in V′EMWE′V and

V′EMWX.

To simplify the analysis, we assume for the time being the following:

MWX =X (A.23)

MWX∗ =X∗. (A.24)

In other words, we assume independence between X and W, as well as its discretized version.

This may appear to be a strong assumption but it does allow us to see what is happening
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somewhat better. We relax this at a later stage.

The OLS estimator in this case becomes:

β̂ββ = (V′EE′V)
−1

V′EXβββ + (V′EE′V)
−1

V′Eεεε.

The OLS is unbiased if (V′EE′V)−1V′EX = I. Note that V′ and E are of size K ×MK

and MK × N , respectively. This means V′EE′V are invertible as long as N > K, which

is a standard assumption in classical regression analysis. Let us consider a typical element

in V′EE′V first. Since V is non-stochastic as it contains only all the pre-defined interval

values, it is sufficient to examine EE′:

EE′ =



e11 . . . e1i . . . e1N
... . . .

... . . .
...

ek1 . . . eki . . . ekN
... . . .

... . . .
...

eK1 . . . eKi . . . eKN





e′11 . . . e′k1 . . . e′K1
... . . .

... . . .
...

e′1i . . . e′ki . . . e′ki
... . . .

... . . .
...

e′1N . . . e′kN . . . e′KN


.

Note that each entry in E is a vector, so EE′ will result in a partition matrix whose elements

are the sums of the outer products of eki and elj for k, l = 1, . . . , K and i, j = 1, . . . , N .

Specifically, let qkl be a typical block element in EE′, then

qkl =
N∑
i=1

ekie
′
li.

Let 1kim = 1 (ckm−1 ≤ zki < ckm), then the (m,n) element in qkl, qmn is
N∑
i=1

1kim1
li
n for m,n =

1, . . . ,M . Thus, E (EE′) exists if E
(
1kim1

li
n

)
exists,

E
(
1kim1

li
n

)
=

∫
Ω

f(xk, xl)dxkdxl , (A.25)

where f(xk, xl) denotes the joint distribution of xk and xl and Ω = [ckm−1, ckm]× [cln−1, cln]

defines the region for integration. Thus, N−1bmn should converge into Equation (A.25) under

the usual WLLN.

Following a similar method, let akl be the (k, l) element in V′EX, then

akl =
N∑
i=1

M∑
m=1

vkm1
ki
mxli.
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Now,

E

[
M∑
m=1

vkm1
ki
mxli

]
=

M∑
m=1

vkmE
[
1kimxli

]
=

M∑
m=1

vkm

∫
Ω1

xlf(xk, xl)dxkdxl ,

(A.26)

where Ω1 = [ckm−1, ckm]×ΩX with ΩX denotes the sample space of xk and xl. Thus, N
−1akl

converge into Equation (A.26) under the usual WLLN.

In the case when Equations (A.23) and (A.24) do not hold, the analysis becomes more

tedious algebraically, but it does not affect the result that OLS is biased. Recall Equation

(A.22), and let ωij be the (i, j) element in MW for i = 1, . . . , N and j = 1, . . . , J , then

following the same argument as above, EMWE′ can be expressed as aM×M block partition

matrix with each entry a K ×K matrix. The typical (m,n) element in the (k, l) block is

gkl =
N∑
j=1

N∑
i=1

ωij1
ki
m1

li
n (A.27)

with its expected value being

N∑
i=1

N∑
j=1

∫
Ω

ωijf (xk, xl,W) dwkdwkdW, (A.28)

where W = (w1, . . . , wJ), dW =
J∏
i=1

dwi and Ω = [ckm−1, ckm]× [cln−1, cln]× ΩW where ΩW

denotes the sample space of W. Note that ωij is a nonlinear function of W, and so the

condition of existence for Equation (A.28) is complicated. However, under the assumption

that the integral in Equation (A.28) exits, then N−1gkl should converge to Equation (A.28)

under the usual WLLN. It is also worth noting that E [MWX] = E [MW]E [X] = E [X] and

E [MWX∗] = E [MW]E [X∗] = E [X∗] under the assumption of independence, which reduces

Equation (A.28) to Equation (A.25).

Again, following the same derivation as above, a typical element in V′EMWX is

hkl =
M∑
m=1

N∑
i=1

xkm1
ki
muli, (A.29)

where uli =
N∑
υ=1

ωiυXlυ. Note that uli is the i
th residual of the regression of Xl on W. The
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expected value of hkl can be expressed as

M∑
m=1

vkm

∫
Ωm

ulf(xk, xl,W)dxkdxldW, (A.30)

where ul denotes the random variable corresponding to the ith column of MWX and Ωm =

[ckm−1, ckm] × ΩX × ΩX with ΩX denotes the sample space of W. Note that ul = wl under

the assumption of independence, which reduces Equation (A.30) to Equation (A.26).

A.5.6 Extension to Panel Data

So far, we have dealt with cross-sectional data. Next, let us see what changes if we have

panel data at hand. We can extend our DGP based on Equation A.20, to

Yit = X ′
itβ + εit, (A.31)

where Xit ∼ fXi
(al, au) denotes an individual distribution with mean µi for i = 1, . . . , N .

Here we need to assume that fXi
(·) is stationary, so the distribution may change over indi-

vidual i but not over time, t.

Now, the most important problem is identification. If the interval for an individual

does not change over the time periods covered, the individual effects in the panel and the

parameter associated with the class variable cannot be identified separately. The within

transformation would wipe out the interval variable as well. When the interval does change

over time, but not much, then we are facing weak identification, i.e., in fact very little

information is available for identification, so the parameter estimates are going to be highly

unreliable. This is a likely scenario when M is small, for example, M = 3 or M = 5.

The bias of the panel data within the estimator can be easily shown. Let us re-write

Equation (A.20) in a panel data context without further control variables W.

y = DNααα +X∗βββ + [(X−X∗)βββ + εεε] ,

where ααα = (α1, . . . , αN)
′ and DN is a NT × N zero-one matrix that appropriately selects

the corresponding fixed effect elements to form ααα. The Within estimator is

β̂ββ
∗
X = (X∗′MDN

X∗)−1X∗′MDN
y ,
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or equivalently

β̂ββ
∗
X = (V′EMDN

E′V)−1V′EMDN
Xβββ + (V′EMDN

E′V)−1V′EMDN
εεε ,

where

MDN
y = MDN

X∗βββ +MDN
[(X−X∗)βββ + εεε].

The Within estimator is biased as E(β̂ββ
∗
X) ̸= βββ, because MDN

E′V = MDN
X∗ ̸= MDN

X.

A.6 Split sampling and perception effect

A.6.1 Explanatory variable

Let us extend our methodology for split sampling with perception effects when the explana-

tory variable is discretized. The discretization of Xi, is the same as defined in Equitation 21,

with Bs perception effect for split sample s. Let X̃∗∗
i = X̃∗

i + Bs denote the observations in

the working sample that derived from X∗
i and X∗∗

i , respectively. The model with perception

effects is,

Yi = βX̃∗∗
i + ui = βZ̃∗

i + βBs + ui .

Extending to a multivariate case, requires specifying BX the perception effect matrix with

S ×K dimensions, that allows for different effects for each split sample s and variable k in

X. Rewrite in matrix form results in

y = X̃∗βββ +DBXβββ + u,

where D is a N × S zero-one matrix that extracts the appropriate elements from BX.

We need to modify the replacement estimator κκκ for the above to hold. We need to keep

track of the perception effects, thus from which split sample each observation comes from

when estimating the conditional averages. This implies,

κ̂κκs =
(
1′
{X∈C(s)

m ,X∈s}
1{X∈C(s)

m ,X∈s}

)−1

1′
{X∈C(s)

m ,X∈s}
X̃∗∗ .

As S,N → ∞
κ̂κκs = vec

(
E
[
X|X ∈ C(s)

m ) +BX

])
+ op(1) ,

where vec(·) vectorize the conditional expectations similarly as in Section A.3.1. Note that

to identify BX, we require variation along s and k, thus individual i shall face different split
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sample discretization for different variables. This is a mild condition and can be satisfied if

the survey is constructed accordingly.

Now, the estimation of βββ can be done in the spirit of a fixed effect estimator. Define the

usual residual maker, MD = IN −D (D′D)−1D′, then

β̂ββ =
(
X̃∗′MDX̃

∗
)−1

X̃∗′MDy (A.32)

is a consistent estimator of βββ following the similar argument.

Perhaps a more interesting question is the presence of perception effects over different

m. In principle, this can also be incorporated by replacing Bs with Bsm for s = 1, . . . , S and

m = 1, . . . ,M . Therefore, this particular setup does not just allow for perception effects due

to different split samples, but rather, it provides a framework to investigate different types

of perception effects. This would be an interesting avenue for future research in this area.

A.6.2 Both variables

Similarly, as before, let us define the observed discretized variables with perception effects

in the univariate case,

Ỹ ∗∗
i = Ỹ ∗

i +BY X̃∗∗
i = X̃∗

i +BX .

The model without further controls is,

Ỹ ∗∗
i = βX̃∗∗

i + ui ,

that is equivalent to

Ỹ ∗
i +BY = βX̃∗

i + βBX + ui

Ỹ ∗
i = βX̃∗

i + βBX −BY + ui .
(A.33)

Equation A.33 is interesting, as it allows for different perception effects in both Yi and

Xi variables in the univariate case. However, in such a setup, the parameters can not be

identified in general. To show this, let us consider the matrix formulation,

ỹ∗ +TBY = X̃∗βββ +DBXβββ + u

ỹ∗
1 = X̃∗βββ +DBXβββ −TBY + u

where BY = (BY,1, . . . , BY,SY
)′. A unique solution for βββ exists if and only if T is orthogonal

to D. If so, one can use the corresponding residual maker MTD = MTMD, that yields in

β̂ =
(
X̃∗′MTDX̃

∗
)−1

X̃∗′MTDỹ
∗. Note however this assumption requires a careful survey
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design. Lastly, note that when constructing ψ̂ψψY and ψ̂ψψX , one needs to keep track of the split

sample as well to ensure convergence.

A.6.3 Test for perception effect

It is theoretically possible to test the impacts of the perception effects on the estimator. For

simplicity we use the discretization case explored in the main paper in Section 4.5, where the

outcome variable is discretized. Since β̂ββ as defined in Equation 22 is consistent regardless of

the presence of perception effects. As,

β̃ =
(
X̃′X̃

)−1

X̃′ỹ∗∗

is consistent only in the absence of the perception effects or if the effects are uncorrelated

with X, then under the usual regularity conditions, the test statistic is(
β̂ − β̃

)′ [
Var

(
β̂ − β̃

)]−1 (
β̂ − β̃

)
a∼ χ2(K).

The exact regularity conditions and the construction of the test statistic would depend on

the nature of the perception effect. For example, the case where B is fixed would be different

from the case where B is a random vector. It would also appear that some assumptions on

B are required to compute the test statistics. This is another interesting avenue for future

research.

A.7 Further Monte Carlo evidence

We extend the Monte Carlo simulations in five different ways. The basic setup is the same

as in Section 5, and we change each time one parameter compared to the basic setup. First,

we investigate the effect of sample size on our shifting method, and how the magnitude of

the bias changes when we use N = 1, 000. As a second exercise, we investigate how the bias

changes if the generated distributions are symmetric. As a third exercise, we check how the

bias changes if instead of M = 5 we use only M = 3 intervals representing ’low-mid-high’

categories. As the last exercise, we show some results on how the bias vanishes as we increase

N and S, and the inconsistency of the alternative(s). All the following tables show the Monte

Carlo average bias (or distortion) of β̂ from β = 0.5. In parenthesis, we report the Monte

Carlo standard deviation of the estimated parameter.
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A.7.1 Explanatory variable

First, we investigate the case, when Xi is discretized, hence we only observe X∗
i .

A.7.1.1 Moderate sample size

For moderate sample size set N = 1, 000. Table A.1 shows the results which are similar to

the results with N = 10, 000 as reported in the paper.

Normal Logistic Log-Normal Uniform Exponential Weibull

Mid-point regression
-0.0251 -0.0100 -0.0170 0.0003 0.0009 -0.0414

(0.0175) (0.0143) (0.0159) (0.0126) (0.033) (0.0229)

Shifting (S = 10)
-0.0002 0.0001 -0.0005 0.0002 0.0008 -0.0004

(0.0179) (0.0140) (0.0155) (0.0120) (0.0287) (0.0228)

Table A.1: Monte Carlo average bias and standard deviation with moderate sample size,
N = 1, 000, when discretization happens to the explanatory variable

Shifting method always outperforms the alternatives, except in the case of uniform and

exponential, where there is no bias or small.

A.7.1.2 Symmetric boundaries

Next, we investigate symmetric boundary cases. We set the domain of the explanatory

variable to al = −2, au = 2 and keep εi generated in the same way. For the log-normal,

exponential, and weibull cases, we truncate at 3 and subtract 1 from the generated distribu-

tion.

Normal Logistic Log-Normal Uniform Exponential Weibull

Mid-point regression
-0.0312 -0.0228 -0.0051 -0.0169 -0.0015 -0.0172

(0.0067) (0.0062) (0.0092) (0.006) (0.0285) (0.0174)

Shifting (S = 10)
0.0001 -0.0001 0.0002 0.0000 0.0006 0.0002

(0.0066) (0.0062) (0.0087) (0.0059) (0.0242) (0.0157)

Table A.2: Monte Carlo average bias and standard deviation with symmetric boundary
points: al = −2, au = 2, when discretization happens to the explanatory variable

In this case the bias is even more severe for the mid-point regression than in the assymetric

case. This relates to the distance of the midpoints and the actual excepted values within the

intervals. Shifting performs in this setting well and the bias vanishes.
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A.7.1.3 Number of intervals (M)

Another question is how the number of intervals (M) affects the bias. In this exercise, we

investigated theM = 3 case, where interval defines (known) low-mid-high ranges. In general,

the bias increases for the methods, however, it shows up in a larger standard deviation.

Normal Logistic Log-Normal Uniform Exponential Weibull

Mid-point regression
-0.0252 -0.0101 -0.0174 0.0002 0.0005 -0.0422

(0.0057) (0.0046) (0.0051) (0.0040) (0.0102) (0.0073)

Shifting (S = 10)
0.0002 0.0001 0.0000 0.0002 0.0005 0.0002

(0.0056) (0.0044) (0.0049) (0.0038) (0.009) (0.0072)

Table A.3: Monte Carlo average bias and standard deviation with small number of interval
options, M = 3, when discretization happens to the explanatory variable

A.7.1.4 Convergence in N

Table A.4 shows the (asymptotic) reduction in the bias with the split sampling method.

We use now only normal distribution’s setup for εi. The shifting method decreases the bias

towards zero, but one needs higher N and S as well. Mid-point regression remains biased

regardless of N .

N = 1, 000 N = 10, 000 N = 100, 000

Midpoint regression
-0.1053 -0.105 -0.1044

(0.0521) (0.0166) (0.0052)

Shifting

S = 3
-0.0252 -0.0269 -0.0259

(0.0610) (0.0193) (0.0059)

S = 5
-0.0158 -0.0162 -0.0155

(0.0594) (0.0188) (0.0060)

S = 10
-0.0115 -0.0101 -0.0097

(0.0586) (0.0189) (0.0058)

S = 25
-0.0085 -0.0073 -0.0067

(0.0587) (0.0188) (0.0058)

S = 50
-0.0066 -0.0053 -0.0049

(0.0577) (0.0189) (0.0058)

S = 100
-0.0048 -0.0041 -0.0037

(0.0579) (0.0186) (0.0058)

Table A.4: Bias reduction for split sampling methods: different sample sizes and number of
split samples, when discretization happens to the explanatory variable
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A.7.2 Outcome variable

In the following, we provide further evidence on the bias reduction, when discretization

happens on the left-hand side, thus to the outcome variable Yi.

Notes: In the case of ‘Set identification’ † shows that we can only estimate the lower and

upper boundaries for the valid parameter set. We report these bounds subtracted with the

true parameter, therefore it should give a (close) interval around zero. For ordered choice

models ∗ shows we report the distortion from the true β is reported. Ordered probit and

logit models’ maximum likelihood parameters do not aim to recover the true β parameter,

therefore it is not appropriate to call it bias.

A.7.2.1 Moderate sample size

First, we investigate the magnitude of the bias, when the sample size is moderate, namely

N = 1, 000. Table A.5 shows the results which are similar to the results with N = 10, 000

as reported in the paper.

Normal Logistic Log-Normal Uniform Exponential Weibull

Set identification† [−1.1, 1.15] [−1.09, 1.15] [−1.09, 1.16] [−1.07, 1.17] [−1.06, 1.18] [−1.09, 1.15]

(0.06),(0.07) (0.08),(0.08) (0.07),(0.07) (0.09),(0.09) (0.08),(0.09) (0.05),(0.06)

Ordered probit∗
0.1978 0.0690 0.2138 0.0181 0.0965 0.4484

(0.0810) (0.0797) (0.0827) (0.0763) (0.0795) (0.0908)

Ordered logit∗
0.6523 0.3828 0.6967 0.2419 0.4309 1.2109

(0.1479) (0.1431) (0.1561) (0.1364) (0.1455) (0.1682)

Interval regression
0.0254 0.0329 0.0398 0.0512 0.0638 0.0396

(0.0618) (0.0784) (0.0694) (0.0882) (0.0825) (0.0505)

Midpoint regression
0.0209 0.0293 0.0310 0.0453 0.2029 0.0275

(0.0643) (0.0786) (0.0733) (0.0895) (0.0426) (0.0526)

Shifting (S = 10)
-0.0043 -0.0021 -0.0036 -0.0014 -0.0019 -0.0019

(0.0611) (0.0758) (0.0685) (0.0869) (0.0389) (0.0475)

Table A.5: Monte Carlo average bias and standard deviation with moderate sample size,
N = 1, 000, when discretization happens to the outcome variable

Shifting method always outperforms the alternatives.

A.7.2.2 Symmetric boundaries

Next, we investigate symmetric boundary cases. We set the domain of the outcome variable

to al = −3, au = 3 and keep Xi generated in the same way. εi is generated/truncated such

that its lower and upper bound is −2 and 2. In the normal, logistic, and uniform cases,
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it means the lower and upper bounds are −2 and 2. For the log-normal, exponential, and

weibull cases, we truncate at 4 and subtract 2 from the generated distribution.

Normal Logistic Log-Normal Uniform Exponential Weibull

Set identification† [−1.11, 1.13] [−1.15, 1.10] [−1.09, 1.16] [−1.07, 1.17] [−1.06, 1.19] [−1.09, 1.15]

(0.02),(0.02) (0.02),(0.02) (0.02),(0.02) (0.03),(0.03) (0.03),(0.03) (0.02),(0.02)

Ordered probit∗
0.0890 0.0029 0.2085 0.0158 0.0986 0.4461

(0.0252) (0.0243) (0.0262) (0.0234) (0.0241) (0.0295)

Ordered logit∗
0.4513 0.3198 0.6862 0.2379 0.4338 1.2085

(0.0446) (0.0427) (0.0499) (0.0422) (0.044) (0.0546)

Interval regression
0.0085 -0.0267 0.0371 0.0491 0.0663 0.0397

(0.022) (0.0234) (0.0221) (0.0271) (0.0249) (0.0166)

Midpoint regression
0.0070 0.0240 0.0362 0.0490 0.2077 0.0314

(0.0211) (0.0242) (0.0216) (0.0273) (0.0128) (0.0157)

Shifting (S = 10)
-0.0001 0.0004 -0.0001 -0.0007 -0.0015 -0.0001

(0.0199) (0.0232) (0.0204) (0.0262) (0.0115) (0.0140)

Table A.6: Monte Carlo average bias and standard deviation with symmetric boundary
points: al = −3, au = 3, when discretization happens to the outcome variable

As we expected the maximum likelihood methods, have a closer fit to the assumed distribu-

tion the distortion is somewhat smaller in the case of ordered probit model7. This is the case

with the normal and logistic distributions for the disturbance term. However, the distortion

remains with the same magnitude for all the other misspecified cases. The shifting method

outperforms all other methods.

A.7.2.3 Number of intervals (M)

We investigated the M = 3 case, where interval defines (known) low-mid-high ranges. In

general, the bias increases for the methods. Interesting exceptions are interval regression and

midpoint regression, where the results become more volatile: in some cases, they give better

results, while in others even worse. The shifting method gives fairly accurate estimates.

7Note that ordered probit and logit uses different scaling (depending on the assumed distribution), which
results in different parameter estimates. In our case it means ordered logit has higher average distortions
than ordered probit, but this is only a matter of scaling. One can map one to the other with the scaling
factor, β̂ML

probit ≈ β̂ML
logit × 0.25/0.3989. This is why we use the term distortion rather than bias for these

methods.
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Normal Logistic Log-Normal Uniform Exponential Weibull

Set identification† [−1.83, 1.90] [−1.85, 1.88] [−1.85, 1.89] [−1.87, 1.87] [−1.89, 1.85] [−1.81, 1.93]

(0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.02),(0.02)

Ordered probit∗
0.1062 -0.0220 0.0197 -0.1028 -0.0752 0.2347

(0.0272) (0.0266) (0.0278) (0.0250) (0.0253) (0.0302)

Ordered logit∗
0.5193 0.3220 0.3916 0.1700 0.2169 0.7246

(0.0462) (0.0457) (0.0472) (0.0423) (0.0428) (0.0509)

Interval regression
0.0124 0.0124 0.0122 -0.0044 -0.0243 -0.0061

(0.0224) (0.0281) (0.0268) (0.0306) (0.0280) (0.0200)

Midpoint regression
0.0336 0.0168 0.0229 -0.0011 -0.2026 0.0647

(0.0233) (0.0274) (0.0267) (0.0307) (0.0170) (0.0216)

Shifting (S = 10)
-0.0274 -0.0114 -0.0009 -0.0027 0.0011 -0.0008

(0.0237) (0.0256) (0.0226) (0.0277) (0.0135) (0.0151)

Table A.7: Monte Carlo average bias and standard deviation with small number of interval
options, M = 3, when discretization happens to the outcome variable

Also note that with the shifting method, the average bias is within 1 standard deviation,

which is not true for the other methods, especially when the underlying distribution is

exponential or weibull.

A.7.2.4 Convergence in N

Table A.8 shows the (asymptotic) reduction in the bias with the split sampling methods.

We use now only normal distribution’s setup for εi. As Table A.8 suggests, as we increase

the number of observations the bias vanishes for the shifting method. Also if we increase

the number of split samples the bias tends to decrease. It is important to highlight the

other methods’ bias/distortion remains the same as we increase the number of observations,

therefore they give inconsistent estimates.
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N = 1, 000 N = 10, 000 N = 100, 000

Set identification†
[−1.1, 1.15] [−1.1, 1.15] [−1.1, 1.15]

((0.06),(0.07)) ((0.02),(0.02)) ((0.01),(0.01))

Ordered probit∗
0.1978 0.1971 0.1968

(0.0810) (0.0256) (0.0080)

Ordered logit∗
0.6523 0.6509 0.6502

(0.1479) (0.0464) (0.0146)

Interval regression
0.0254 0.0268 0.0266

(0.0618) (0.0198) (0.0062)

Midpoint regression
0.0257 0.0251 0.0251

(0.0635) (0.0195) (0.0061)

Shifting

S = 3
-0.0019 0.0014 -0.0008

(0.0635) (0.0197) (0.0062)

S = 5
-0.0016 -0.0007 -0.0005

(0.0614) (0.0189) (0.0060)

S = 10
-0.0067 -0.0025 -0.0006

(0.0605) (0.0190) (0.0059)

S = 25
0.0052 0.0008 -0.0001

(0.0602) (0.0185) (0.0057)

S = 50
-0.0027 -0.0011 -0.0004

(0.0587) (0.0185) (0.0058)

S = 100
-0.0006 -0.0002 -0.0002

(0.0596) (0.0183) (0.0057)

Table A.8: Bias reduction for split sampling methods: different sample sizes and number of
split samples, when discretization happens to the outcome variable

A.7.3 Both side

In our final simulations, we investigate the properties of bias when both outcome and ex-

planatory variables are discretized.

A.7.3.1 Moderate sample size

For moderate sample size set N = 1, 000. Table A.9 shows the results which are similar to

the pattern with N = 10, 000 as reported in the paper.
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Normal Logistic Log-Normal Uniform Exponential Weibull

Mid-point regression
-0.0856 -0.0797 -0.0759 -0.0647 0.0809 -0.0771

(0.0571) (0.0691) (0.0616) (0.0790) (0.0377) (0.0456)

Shifting (S = 10)
0.0139 0.0094 0.0042 0.0064 0.0001 0.0035

(0.0607) (0.0768) (0.0668) (0.0862) (0.0364) (0.0452)

Table A.9: Monte Carlo average bias and standard deviation with moderate sample size,
N = 1, 000, when discretization happens on both sides

Shifting method always outperforms the alternative mid-point regression.

A.7.3.2 Symmetric boundaries

For the symmetric boundary case, we set the domain of the disturbance term to al = −2, au =

2 and keep Xi generated in the same way. Now the outcome variable’s domain is between

−3 and 3. For the log-normal, exponential, and weibull cases, we truncate at 3 and subtract

1 from the generated distribution.

Normal Logistic Log-Normal Uniform Exponential Weibull

Mid-point regression
-0.0975 -0.0838 -0.0752 -0.0635 0.0797 -0.0759

(0.0189) (0.0217) (0.019) (0.0243) (0.0116) (0.0137)

Shifting (S = 10)
0.0088 0.0075 0.0056 0.0057 0.0026 0.0047

(0.0205) (0.0237) (0.02211) (0.0264) (0.0118) (0.0142)

Table A.10: Monte Carlo average bias and standard deviation with symmetric boundary
points: al = −2, au = 2, when discretization happens on both sides

Results are similar to the reported table in the main paper.

A.7.3.3 Number of intervals (M)

We investigated the M = 3 case, where interval defines (known) low-mid-high ranges. In

general, the bias increases for the methods. Shifting gives closer results to zero bias.
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Normal Logistic Log-Normal Uniform Exponential Weibull

Mid-point regression
-0.1998 -0.2091 -0.2221 -0.2143 -0.3552 -0.2012

(0.0177) (0.0210) (0.0198) (0.0235) (0.0108) (0.0154)

Shifting (S = 10)
-0.1062 -0.0168 -0.0123 0.0142 -0.0049 0.0092

(0.0269) (0.0301) (0.0257) (0.0304) (0.0137) (0.0162)

Table A.11: Monte Carlo average bias and standard deviation with small number of interval
options, M = 3, when discretization happens on both sides

A.7.3.4 Convergence in N

Table A.12 shows the (asymptotic) reduction in the bias with the split sampling methods.

We use now only normal distribution’s setup for εi. Here the bias is not decreasing as quickly

as in the other cases.

N = 1, 000 N = 10, 000 N = 100, 000

Midpoint regression
-0.1562 -0.1547 -0.1543

(0.0517) (0.0162) (0.0051)

Shifting

S = 3
-0.0694 -0.0609 -0.0597

(0.0633) (0.0205) (0.0064)

S = 5
-0.0543 -0.0515 -0.0505

(0.0606) (0.0198) (0.0062)

S = 10
-0.0539 -0.0481 -0.0463

(0.0594) (0.0194) (0.0059)

S = 25
-0.0506 -0.0471 -0.0462

(0.0593) (0.0188) (0.0060)

S = 50
-0.0520 -0.0482 -0.0470

(0.0570) (0.0186) (0.0058)

S = 100
-0.0520 -0.0487 -0.0470

(0.0564) (0.0183) (0.0057)

Table A.12: Bias reduction for split sampling methods: different sample sizes and number
of split samples, when discretization happens on both sides

A.8 Gender wage gap in detail

To demonstrate how our method works in practice, we need a dataset where we can mea-

sure the difference between the parameter estimated on a non-discretized variable and the

parameter(s) using some discretized version of the data. The Australian Tax Office’s (ATO)

individual sample files record income and some basic socio-economic variables for a 2% sam-
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ple of the whole population.8 To contrast this non-discretized income variable with practice,

we use different discretization processes. We employ a simple equally distanced discretiza-

tion method and a specific method, which is used in the Household, Income, and Labour

Dynamics in Australia (HILDA) Survey 9. HILDA is an annual survey and dataset, which is

well known and widely used in Australia for economic research 10. This way we can estimate

parameters on the complete sample and the parameter estimates on ‘what if it is observed

through a discretization process’.

A.8.1 Data

The Australian Tax Office (ATO) dataset is a confidentialised 2% sample of the whole

population. It records individual income tax returns for various income for separate years.

We use data from 2016-17, which contains overall 277,202 records. Our outcome variable is

yearly earned wage in the Australian dollar. Our parameter of interest is the coefficient for

the gender variable. Further variables are,

• Expected age for each age group

– We have calculated the expected age conditional on the age groups. This is

necessary, while the ATO dataset only uses age groups: 0 − 20, 20 − 24, 25 −
29, 30 − 34, 35 − 39, 40 − 44, 45 − 49, 50 − 54, 55 − 59, 60 − 64, 65 − 69, 70+. To

circumvent this discretization process, we are using the Australian Bureau of

Statistics on demographic statistics11, which contains the number of males and

female for each age. Based on this we calculate the conditional expected values

for the year 2016-17, conditioning on gender.

• occupation code (as a series of dummies)

• spouse (dummy)

• region (dummies)

• lodgment method (dummy - via tax agent or self-prepared return)

• private health insurance (PHI) indicator (dummy)

8For details see ATO’s website: https://www.ato.gov.au/about-ato/research-and-statistics/

in-detail/taxation-statistics/taxation-statistics-previous-editions/

taxation-statistics-2016-17 .
9https://melbourneinstitute.unimelb.edu.au/hilda

10see:https://melbourneinstitute.unimelb.edu.au/hilda/publications
11File,31010DO002201906, available at https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/

3101.0Jun%202019?OpenDocument
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Mean Median Std Min Max

wage 77,808 68,864 35,369 34,981 22,4951
total income 83,069 71,337 55,609 -13,5989 3,001,331
exp. age 46.77 47.02 10.78 27.00 61.95

Positive income
Total income> 0 Total income≤ 0

0.9998 0.0002

Gender
Male Female
0.5598 0.4402

Spouse
No Yes

0.3867 0.6133

LM
Tax agent Self preparer
0.7304 0.2696

PHI
No Yes

0.3562 0.6438

Occ. codes∗

0 1 2 3 4
0.0005 0.1537 0.2759 0.1320 0.0774

5 6 7 8 9
0.1392 0.0485 0.0681 0.0714 0.0333

Region. codes†

New South Wales
Capital Other Urban R.H.U. R.L.U. Rural
0.1971 0.0412 0.0388 0.0169 0.0250

Queensland
Capital Other Urban R.H.U. R.L.U. Rural
0.0970 0.0522 0.0131 0.0081 0.0290

Tasmania
Capital Other Urban R.H.U. R.L.U. Rural
0.0055 0.0026 0.0026 0.0018 0.0061

Victoria
Capital Other Urban R.H.U. R.L.U. Rural
0.1830 0.0128 0.0193 0.0120 0.0249

Western Australia
Capital Other Urban R.H.U. R.L.U. Rural
0.0716 0.0030 0.0159 0.0066 0.0125

ACT
South Australia

Capital R.H.U. R.L.U. Rural
0.0218 0.0472 0.0060 0.0043 0.0079

Northern Territory Overseas/
Capital R.H.U. R.L.U. invalid
0.0057 0.0033 0.0026 0.0026

∗Occupation codes: 0 - Occupation not listed/ Occupation not specified, 1 - Man-
agers, 2 - Professionals, 3 - Technicians and Trades Workers, 4 - Community
and Personal Service Workers, 5 - Clerical and Administrative Workers, 6 - Sales
workers, 7 - Machinery operators and drivers, 8 - Labourers, 9 - Consultants, ap-
prentices, and type not specified or not listed
†: R.H.U: regional high urbanisation, R.L.U: regional low urbanisation.

Table A.13: Summary table for used variables
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We restrict our sample to the working population (older than 25 and younger than 65

years old) and we remove individuals whose wage is lower than the 2017 minimum wage

(weekly minimum wage was 627.7 AUD) and whose wage is more than 225.000AUD (that

is the top 1%). Table A.13 shows basic descriptive statistics on the used variables in our

sample.

A.8.2 Discretization process and model results

The discretization process influences the magnitude of the bias. We have fixed the lower

bound to zero and the upper bound to 225, 000 for the wages. We use two different dis-

cretization processes:

• M = 10 with equal distances for mid-point regression and shifting as it was the closer

in our reported main result in Table 4.

• HILDA’s household questionnaire, which uses M = 12+1 categories in 201712: 1 −
9.999, 10.000−19.999, 20.000−29.999, 30.000−39.999, 40.000−49.999, 50.000−59.999,

60.000−79.999, 80.000−99.999, 100.000−124.999, 125.000−149.999, 150.000−199.999

and 200.000 or more. Three extra options are added: negative or zero refused, and

don’t know.

We need to note that HILDA is aiming for total income and not for wages/salaries, thus we

discretize the income jointly with the wages. For the shifting method, we use equal distances

and check for S = 10 during the modeling.

Our outcome variable is yearly wage in Australian dollar and our parameter of interest

is the coefficient for the gender dummy. We compare the conditional average outcome based

on gender, using three different linear models, all of them estimated by OLS,

• Model 1: yi = α + β × genderi + ϵi

• Model 2: yi = α + β × genderi + γ1agei + γ2age
2
i + εi

• Model 3: adding further controls for design 2, occupation code (dummies), having

a spouse (dummy), region (dummies), and whether having private health insurance

(dummy)

• Model 4: Model 3 and interaction terms of occupation and age

12https://melbourneinstitute.unimelb.edu.au/__data/assets/pdf_file/0005/2409674/

HouseholdQuestionnaireW17M.pdf
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Discretization Model 1 Model 2 Model 3 Model 4

Non-discretized -0.2027 -0.2025 -0.2277 -0.2261

(0.0023) (0.0023) (0.0023) (0.0023)

HILDA -0.2012 -0.2010 -0.2258 -0.2242

0.0023 0.0023 0.0023 0.0023

Mid-point regression -0.2124 -0.2122 -0.2381 -0.2364

(0.0025) (0.0024) (0.0025) (0.0025)

Shifting method (S=10) -0.2040 -0.2038 -0.2296 -0.2280

0.0024 0.0024 0.0024 0.0024
Non-discretized row uses the actual wage data. HILDA uses its special 13-category discretiza-

tion outlined above. Mid-point regression and shifting method use M = 10 intervals. Shifting

uses S = 10 split samples. Standard errors are in parenthesis.

Table A.14: Estimated β̂ parameters for gender dummy with different model specifications

Table A.14 shows that the shifting method gives close and statistically non-distinguishable

estimates of the non-discretized parameter value. HILDA performs similarly well, while

mid-point regression gives statistically different parameter values at 5% in almost all cases.
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