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1. Furhter supplements for shifting method

1.1. Proof of Proposition 2

Let z be a realisation of Z and the probability of z falls into the grid C\VS
of the working sample is

s M
Pr(zeCy®) = ZPr(z €Ss) Z Pr(z € CY'8|z € CIY) /( | fz(z)dz. (1)
s=1 m=1 Cn

Let z; = (214, ..., 2zp;) be the i realisation of z for i € Z* and define z; =< z,
if 21; < 2z9; Vi. In other words, z; is ‘less than or equal to’ z; element-wise.
The definition extends natural to other related notations namely <, > and
~.

Similar to the univariate case, Pr(a < ¢;,a < ¢y) = Pr(a < ¢;)ifc; < co.
Under the assumption Pr(z € Ss) = 1/5, then the proof follows the same
argument as the proof for Proposition 1. This completes the proof. B
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1.2. Speed of Convergence for the Shifting Method
The probabilities of the synthetic variable ZT to be fall into C}'* bin is
given by,

0, if s=1and m =1,
1\ 1 . o
P (ZT c CWS) _ S 2322 —1 fC§S)|C,¥VSCC£S) fz(Z)dZ, if s 75 1 and m = 1,
: b Ly d if
52 Zs:l fcss)wg/vsccgs) fZ(Z) 2, itl<m< Mo

5 :
% 23:1 S+S-H fc](\f[)wg/VSch\;) fZ(Z)dzu ifm=M.
(2)
For each of the conditions in Equation (2), the corresponding expression is
o(1). To see this, note that fz(-) is a density, so the integral is less than 1.
First, consider the case of s £ 1 and m =1,
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As S — oo, the ratio in the last line goes to 0. This is expected if the
widths of the classes in the working sample go to zero. This is straightfor-
ward, while the probability that an observation belongs to a point is 0. The
same derivations apply to the case when m = M. Now, consider the case of

l<m< M,
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s=1 (4)

which also converges to 0 as S — 0o, but at a faster rate than in the previous
cases.



1.3. One-by-one discretization

A seemingly competitive alternative is to use discretization that dis-
cretizes each variable in Z one by one. However, this method will not ensure
convergence in distribution for the joint fz(-) that is needed for point identi-
fication. To illustrate our argument let us use a simple illustrative example
with P = 2, hence only two variables are discretized, M = 3 and a; = [0, 0],
a, = [6,6]. For s = 1, ¢ = {[(0,0),(2,2)],[(2,2), (4,4)],[(4,4), (6,6)]}.
Let us use S = 6, thus the shift size h = [0.5,0.5]. Discretizing the variables
independently from each other will result in fixed M intervals along all other
dimensions while learning more and more along one dimension. This will
result in gaps in the domain of fz(-). Figure 1 shows this case, where grey
blocks show the mapped/learned parts of the distribution of fz(-).
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Figure 1: One-by-one variable discretization



1.4. Algorithms for Shifting method

Algorithm A1 The shifting method - creation of split samples

1: For any given S and M, set s =1

Ay — Q

B=S(M-1), h=

2: Set cés) = a; and cg\? = a,.
3: If s =1, set
c(s):c(s)_l—l—A, m=2,...,M—1

else
cﬁi):c,(fflﬂ—h, m=1,...,M —1.

Note: cgl) does not exist.
4: If s < S then s := s+ 1 and goto Step 2.

B M-1"




Algorithm A2 The shifting method — creation of synthetic variable (Z)

1: Set s:=1,m := 1,Z;r = (.
2: Create V (s, m), the set of possible working sample choice values,

{0}, if, s=1and m =1,
o) Ui {eV5), if, s #1 and m = 1,
" U Sl Sy i 1 <m < M,

Ub:B—S+s—1{CWS}7 it m= M.

3: Create the set of observations from the defined split sample class:
A = (7 e N,

where Aﬁ,i) has Nr(,f) number of observations.

4: Draw observations from A} and assign a new value (e.g. mid-value) to

V), based on a randomly selected interval of C}'* € Cr(,if), with probabilities

given by,
1, ifs=1and m=1,
Pr (2t e V3|20 e ey = J /s =1 ifs A Land m =1,
1/S, ifl<m< M, or

1/(S—s+1), ifm=M.

(9)

Example: Let C = [2.5,4.5], = {35,3.5,35}, N\ = 3. The
different intervals in the working sample is C’WS [2 5,3, CWS (3, 3.5],

CyV® = [3.5,4] and C}V° = [4,4. 5] Now we assign each member of A’
to one of the mid- Value of C}VS with 1/4 probabilities which results in

the values of V; = {2.75,3.25,3.75,4.25}.
5: Add these new values to Z,

N

U V; (10)

6: If s < S, then s := s+ 1 and go to Step 3.
7. If s =9, then s := 1 and set m = m + 1 and go to Step 3.
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2. Asymptotic properties of conditional mean estimators for the
shifting method

We investigate the asymptotic properties of the estimator for the conditional
means while using the shifting method to map fz(z;a;,a,). We restrict
our attention to multiple linear regressions defined in Section 4 in the main

manuscript. First, we discuss the estimator & for E [X|X* € Cr(rsl)}, used to

estimate 8, when one or more explanatory variables X are discretized. Sec-
ondly, we investigate the properties of the conditional mean estimator & that
is used when y is discretized on the right-hand side.

2.1. K estimator for E [X\X* € Cr(f{)}

The conditional expectation function for a given grid in C¥is defined as
k(s,m) :=
E [X|X* e CSR] k= (k(1,1),...,5(S,1),....5(S,m),...,x(S,M)) is the
parameter vector of interest containing each conditional means,

E [X|X* € CI(ISI)} , where we condition on the used discretization intervals (or

grid) CI(ISI). Let us define the &, the estimator of kK via OLS as,

—1
ey , ;
k= (1{x*ec£§>}1{x*ec£§)}> l{x*ec£§>}X ) (11)

where 1 is a matrix with dimensions (N x SM*¥) and takes the value of

(xec)y: such that first,

we iterate along s then along each grid points m = (mq,...,mg,...,mg).
The regression equation is given by,

(xecy
one if observations fall into class CI(,SI). We construct 1

Xt = l{X*GCS)}K+nH’ (12)

where 9, = (1, .- ., Ns.n)" the idiosyncratic term.!
By the weak law of large numbers, k is converging to the true underlying
distribution’s conditional expectations, & — Kk as limg_, Fxi(:) = Fx(+)
under Assumptions 2.a), 2.b) and Pr(z € S;) = 1/ as shown in Section 3.2

'We use 5 as the idiosyncratic term for the different cases, hence the subscript to
differentiate among the cases.



from the main manuscript. The asymptotic properties of k can be derived by
using Lindeberg—Lévy central limit theorem with standard OLS assumptions,

VN (k- k) XN (0,9,) . (13)

The asymptotic variance of the OLS estimator is given by

-1
Qlﬁ = V (nf‘ﬁ) <1T{X*GC$)}1{X*ECS)}> ’ <14>

where V' (n,) is the variance of the corresponding idiosyncratic term. Al-
gorithm A3 describes the process for creating the working sample, when
discretization happens with one or more right-hand side variables.

Algorithm A3 Discretization of explanatory variables — creation of working
sample

1: Estimate k as defined in Equation (11).

2 Setc:=1,s:=1,m:=(1,...,1),k:=0, {y"5, X" WW5} =0 .

3: Assign the conditional mean for X* € C¥ from the c’th element of & to
all discretized observations X* € C&. and the observed values y](-s), W;S)
to the working sample,

N
{39, XS, W5} = {yXV XIS WIS | (v kG0, W X; € Cf?)} -

J=1

(15)

4: Set c:=c+ 1.

5. If s < S, then s := s+ 1 and go to Step 3.

6: If s =5, then s := 1,k :=k+1 and set m = m + 1y, where 15, is a
(K x 1) indicator function with value of 1 at element k, otherwise 0. Go
to Step 3.

2.2. 7 estimator for E [y]y* € C,(ﬁ), X e Dl]

Let 7(s,m,1l) be the parameter of interest for each conditional mean:
E|yly* € cly , X € Dl} . We condition the used discretization intervals for y

with C$Y and mutually the exclusive partitions of X denoted by D;. Note
D) elements are vectors denoting each grid point for partition 1. Overall, we
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have S x M x L¥ different conditional expectations defined by (s, m,1).
Note that L is a fixed number by the researcher, K is also a fixed number
of explanatory variables, asymptotically % — 0 is always true, thus the
number of observations in these partitions are asymptotically increasing as
well.2

Let us define the 7 = (7w(1,1,1,...,7(S,1,1),...,7(S, M, 1),...,7(S, M,1),
..., m(S, M,L))" the vectorized version of m(s,m,l) iterating along all s,m
and all partitions 1. We propose 7, an estimator of w via OLS estimator,

-1
N / / t
= (1{yfec$:),xwl}1{yfec§i>,x6731}) 1{yfec5,§>,x6pl}y ‘ (16)

Under the same assumptions as for k in Section 2.1, 7 — . The asymptotic
distribution of the estimator can be derived, similarly. Let us write,

yT = 1{yT€CS),X€D|}7r + N, (17)

where 9 = (Mr1,...,0xn) is the idiosyncratic term. Under standard OLS
assumption, we have

VN (& —7) X N (0,9,) . (18)

The variance of the OLS estimator is given by

-1
. /
O =V (nr) (1{yfec£,§>,XeDI}1{y*6€52)7XEDl}> ’ (19)

where V' (n,) is the variance of the idiosyncratic term. Algorithm A4 de-
scribes how to create in practice the working sample that can be used for
estimation.

2In finite samples L should be chosen such that there are enough observations in each
conditional set.



Algorithm A4 Discretization of the outcome variable — creation of working
sample

1:

Partition the data into L mutually exclusive sets based on the values of

X.

2: Estimate 7 as defined in Equation (16).
3:Setc:=1,s:=1,m:=1,k:=11:=(1,...,1), {yV XV =0 .

Calculate the sample conditional mean: FE[X|X € Dy] defined by the
partition 1.

Add the ¢’'th element of the conditional mean estimator 7 and the calcu-
lated sample means of X to the working sample,

N
{y1"5, X5} = {inS,XiW% U (fr(c)JE XX eD]|X;e Dn)} :
j=1

(20)

If s < S, then s := s+ 1 and go to Step 4.

If s =5, then set s := 1, m :=m + 1 and go to Step 4.

If s =5, then set s :== 1, m := 1,k := k+ laand set 1 = 1 + 1y,
where 1y is a (K x 1) indicator function with value of 1 at element £,
otherwise 0. and go to Step 4.

3. Discretization on both sides

Let us investigate the case when discretization happens with both out-

come y*, and with one or more explanatory variables X*. In this case, we
do not need to partition the domain of X, but can use the discretization
grids CY¥ for the explanatory variable. Note as y is discretized, we need to
partition W with Dy, similarly to the case discussed in Section 4.2 from the
main text. To simplify our derivations, let us assume the number of split
samples and the number of classes are the same for both y and for X, thus

S:

SYZSX andM:My:MX.3

Step 1: Identification with y* and X*

Identification, when discretization happens on both sides, Equation (30)

holds from the main text, but instead of X &€ D, one need to condition on

30ne can extend the analysis, all results are the same.

9



X € Cmy, correct conditioning for y to y* € C,,,, and add the conditioning
W € D,. This leads to

> ) Elyly* € Cony, X" € Cony, W € Dy Pr[X" € Cpoy, W € Dy =

I mx

X* € Cony: W ED B+E [Wy* € Cl) X" € Cruye, W € Dy
(21)

Note that Pr[X* € Cmy, W € Dy] and E [W|y* eCl) Xt €Cny, W e Dl]

are identified as usual. The conditional expectations affected by discretiza-

tion are given by

E [X|y* € C{)

my?

Uy(s,m,1): =E (yly* € C?) , X* € C&) \W € D)

= ) t (s) )
lel*gl E<y|y ecl Xtec mx> WED ),

Yx(s,m,1): =E (X[y* eCl®) ,X* eCf) WeDI)
= lim E(wa ecy, XTec wWenD),

(22)

where CmY is the discretization intervals for y, me is the discretization grid
for X. Note that, s = {sy,sx} and m = {my,mx} in this case, for cl)
and for C,E,Sl)x

Step 2: OLS estimators for conditional expectations

We propose conditional mean estimators, 'l,by and 1/)  via OLS in the same
spirit as for the other cases. To show the properties of the estimators, let
us make our notation more tractable. First, let us define s = (sy, sx) the
split samples used for y and X. The number of split samples Sy and Sx
can be the same or different. Let m = (my, my), vector for the intervals for
y (scalar) and grids for X (vector with (K x 1) elements). The number of
used intervals and grids may be the same or different. Finally, 1 represents
the partition vector for the J variables from W.

Overall for ¥y (s, m, 1) and 1y (s, m,1), we have Sy x Sx x My x ME x L’
different cases. We use vectorized versions for both denoted by %y and
¥ x, that contains these elements iterating in the order of s, s,,, m,, mx, L.

We propose estimators @Y and 170 ¢ via OLS. To simplify our notation, let

10



!/

=1/ . . The estimators are
) {ytecl), xtecly WeDy} ’

~ 1
Yy = (Vi ly) Lyy',
- —1
Uy = (T liy) 1 XT,

Under same assumptions as in Appendix B.1. and B.2. from the main text
Yy — Py and Y — Px. To be specific, we utilize the weak law of large
numbers in both cases and limg, o0 Fyt(-) = F(-), limg, o0 Fxi(-) = Fx(*)
under Assumptions 2.a), 2.b) and Pr(y € Ss) = 1/Sy,Pr(X € S;) = 1/Sx
as shown in Section 3.2. Note that K, J are the number of (discretized)
regressors and fixed, as well as L the number of partitions. The asymptotic
distribution of the estimator can be derived, similarly. Let us write,

(23)

Y=Ly +ngy . X =1x + 0y, (24)

where Ny, = Mgy 15+ Moy )" A0d Ny = (Mpy 1, - -+ Nyy.v)’ are the corre-
sponding idiosyncratic terms. Under standard OLS assumption, we have

VN (@ =y ) AN (0,5,) . VN (§y —9x) SN (0,0y,) . (25)
The variance of the OLS estimators is given by

/ -1 / -1
Quy =V o) Ny lwy) 0 Qo =V ) (T 1) (26)

where V (9, ),V (ny,) are the variances of the idiosyncratic term. Algo-
rithm A5 describes how to create in practice a working sample when dis-
cretization happens on both sides of the regression equation.

11



Algorithm A5 Discretization on both sides — creation of working sample

1: Partition the W into L mutually exclusive sets.
2: Estimate 9y and 9y as defined in Equation (23)
3: Set ¢ == 1,8y = 1,sx := I,my := Ilmy = (1,...,1),k := 0,1 :=
(1,...,1),
j = 0’ {yWS,XWS,WWS} =0 .
4: Calculate the sample conditional mean:
[W\y ecly) X e Cl) W e Dl}

5: Add the c’th element of the conditional mean estimators 'l,Aby, @  and the
calculated sample means of W to the working sample,

S
|

{yWS XWS WWS} _{yWS XWS WWS (27)
N
U <¢Y(C)7¢X(C)JW | y] € C(Sy X* S Cnsl;,w c D])} .
j=1
(28)

If sy < Sy, then sy := sy + 1 and go to Step 4.

If sy = Sy, then set sy :=1, sx := sx + 1 and go to Step 4.

If sx = Sx, then set sy :=1,sx := 1, my := my + 1 and go to Step 4.
If m, = My, then set sy = 1,sx := 1,my := 1,k == k+1, myx =
my + 1y and go to Step 4.

10: If £ = K — 1, then set sy := 1,sx = 1,my = 1,k := 0, myx :=
(1,...,1),7:=7+1,1:=1+ 1 and go to Step 4.

Step 3: OLS estimator for B

To get a consistent estimator for 8, let us define y and X that takes the
corresponding values from pr, and 1,0 y based on the discretized values of y*
and X*. Note that if there are additional controls W, one needs to replace it

with W that takes the sample conditional means of E <W\y* € Cr(rfi, X* e Cl(qsl)x, W e D1> .

y = XB+ Wy +7, (29)

where ¥ = (v4,...,vy). The OLS estimator for 3 is,
A o o\ 1 o
B=(XMyX) X'Myy, (30)

12



where My, is the usual residual maker, using W. Note that E[7;] = 0 for all
1=1,...,N sincey, X and W are consistent estimates of the correspondin%
conditional expectations. Moreover, E[#;7;] = 0 for i # j due to D), and cs
in m and k are mutually exclusive. E[#;|X, W] = 0 since the discretization
does not affect the sampling error. Furthermore,if the discretization is mean
independent from the discretization scheme, then, ,B — B = 0,(1). Under the

these assumptions, E [f/ﬁ'])v(, W] = 021, the asymptotic distribution of ,B is
. y 2N -1
given by VN (,3 . ﬂ) LN (0, o2 <X’MWX) )

4. Magnifying Method

Here, we discuss another split sampling method that also converges in dis-
tribution to the unknown distribution, but has different discretization scheme
thus different properties. The idea for magnifying method is to magnify spe-
cific parts of the underlying variable’s domain. The interval size for each
split sample depends on the number of split samples (S) and the number of
original intervals (M). As the number of split samples increases, the interval
widths decrease, which is the main mechanism for uncovering the unknown
distribution. Figure 2 shows the main idea of the magnifying method for the
case of M = 3,5 = 4.

0 1 2 6 )

(') 2 3 6 split samples
. . . . S=4M=3
0 3 4 6

: : : ./

0 4 5 6

0 1 2 3 4 )

working sample
B=S(M-2)+2

oy +

Figure 2: The magnifying method

As seen in Figure 2, there are two types of intervals: i) Around the boundaries
of Z, the first and last interval widths are changing and in general they do
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not decrease as we increase the number of split sizes. Observations that
fall into these intervals are called “non-directly-transferable observations”
or NDTOs. ii) All remaining intervals have widths that are decreasing as
S increases. Observations falling into these categories are called “directly-
transferable observations” or DTOs. These DTOs can then be used to map
the original distribution.*

To explore the properties of the magnifying method, let us establish the
connection between the number of magnified intervals in the working sample
(B), and the number of split samples (S) and intervals (M),

B=S(M-2)+2. (31)

Note that we have 2 split samples (first and last respectively), where we
magnify intervals around the boundary of the domain. Here, we capture
M — 1 intervals of equal size, for all the other S — 2 split samples, there are
M — 2 intervals.

The widths of the intervals in the working sample are given by,

Ay —

h= e 0
S(M —2) + 2

(32)
Intuitively, the magnifying method works as if we increase the number of split
samples, the magnified interval widths go to zero (h — 0 as S — o). Note
however, to have this property we will fix the upper and lower bounds of the
support for the split samples (a; = ¢/ = c[()s); a, = ey = cg\?, Vs), thus
make sure that the discretized domain does not have infinite support. Next,
we derive the boundary points for each magnified split sample and show how
and under what assumptions the working sample converges in distribution
to the underlying unknown distribution.

4Note that, the first and last split samples are slightly different. Their observations

from first/last intervals (cgl) and cgj)) are also DTOs, as the interval widths are decreasing

in S similarly to the intervals that are not at the boundary points (c,(;), Vi<s< S 1<

m < M).
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Algorithm A6 Magnifying method — creation of the split samples

1: For any given S and M. Set

B=S(M—2)+2 (33)
Ay — Q)
h = 34
= (31)
s =1. (35)
2: Set c(()s) = a; and cg\”}) = a,.
3: If s =1, then set
& =cf+h, (36)
else set
s s—1
cg ) — 05\/1—1)~ (37)

N

: Setcﬁi):cgi)_l+hform:2,...,]\/[—1.
: If s < S then s := s+ 1 and goto Step 2.

ot

The boundary points for each split sample can be derived as

a; or — o0 ifm=20,

(s) _ a; +mh if0<m< M and s =1,
a+hj(s—=2)(M-2)+M+m—-2] f0<m<Mands>1,
Q,, Or 00 ifm= M.

(38)
The intuition behind this is that on the boundaries of the support, the split
samples take the values of the lower and upper bounds. For the first split
sample, one needs to shift the boundary points m times. However, for the
other split samples, one needs to push by h(M —1) times to shift through the
first questionnaire and then h(M — 2) to shift through each split sample in
between s = 2 and s = S — 1, s —2 times. Deriving this process algebraically
will result in the above expression.® Algorithm A6 shows how to create the
boundary points for the split samples in the case of the magnifying method.

5There is an alternative way to formalize the boundary points, when one starts from
aq- The formalism will result in the same conclusions.
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The working sample’s boundary points are given by the unique boundary
points from the split samples, which leads to
w — ]

CXVS:CLZ—th:CLl—f—b a

SO —2) 12 (39)

To show how and why the magnifying method works, let us derive the
different interval widths for each split samples’ interval, defined by Equation
(38). Let ||C]| = &) — )| be the m-th interval width, then for the split
samples which are in-between the boundaries (1 < s < S) and substituting
for h, we can write

(ay — ay) (S(M72)+2 + S(Al[M ) ifm=1,1<s<3§,

S(M—2)+2 —9)12
ICN = { sti=si2 ifl<m<M, 1<s<S,
(&u—&z)(l—%) itm=M, 1<s<S.
(40)
We can also define the interval widths for the first and last split samples as
W[ = S{X}[‘f_;)l” if1<m< M,
" (au_al)<1—%) 1fm:M,
(41)

Qu 0 if1<m<M.

M—-1 : _
e - {“u —a) (1= i) m=1
S(M—2)+2

Note that |[C']] < ||| and [|CS|| < [|C\]]. Formally, let us define
C::{Cﬁf)]1<m<M,1<s<S,C7(ﬁ)\1§m<M,C,(,§q)\1<m§M}as

the set of intervals which have the interval width %

An interesting insight that we can write Pr ((z — 2(9)?|z € ( < (z = 29)? | 2 € ()

1, which is true if and only if, E[Z] = E [Z(S)] ,VZ. One example is when Z
is uniformly distributed.

Now, let us check the limit in the number of split samples. We end up
with the following limiting cases

0 ifl1<m<M, 1<s<S,

. (42)
ay,—a; ifm=M1<s<S,

Jim (le1l) ={

16



and for the first and last split sample

0 ifl1<m< M,

lim ([|C{[]) = .
S—o00 a, —a; ifm=M,
(43)

u if =M,
lim (Jlef) =4
S—o0 0 ifl<m<M.

This formulation takes a; as the starting point and expresses the boundary
points given a;. However, we can use a, as the starting point as well to
shift the boundary point. This implies that the convergences on the bounds
(HCF)H, HC](\Z)H) will change, resulting in those parts not converging to 0 in
general.

Now, it is clear that there are two types of observations: The first type
is ZZ-(S) € (. These observations are the closest to the underlying unknown
observations, as these have the feature of limg_, \|C7(,f) || = 0. Moreover, these
observations have the same interval width as the working sample’s intervals
and each of them can be directly linked to a certain working sample interval
by design. Formally, 3C%) 22 C/VS such that ¢ = VS, ¢ | = S We call
these values “directly transferable observations”, as we can directly transfer
and use them in the working sample. These observations are denoted by
ZPT0 = Zi(s) € (, Vs, and the related random variable by ZP7T0.

The second type of observation is all others for which none of the above is
true. We call them “non—directly transferable observations”. Algorithm A7
describes how to construct the working sample when using only the directly
transferable observations.

Algorithm A7 Magnifying method - creation of the “DTO” working sample
1: Set m=1,s =1 and ZPT9 = ).
2. I C\Y € ¢, add observations from interval Ct to the working sample:

N
ZPT0 = {Z}?TO, U (77 ecy ey e g)} (44)
j=1

3: If s < S, then s := s+ 1 and go to Step 2.
4: If s= 5, then s :=1 and set m =m + 1 and go to Step 2.

17



As a next step let us derive the probability that a directly transferable ob-
servation lies in a given interval of the working sample. Based on Equation
(11) from the main text,

ws
S

Pr(ZeC)y?)=Pr(Z € Ss)/ . fz(2)dz. (45)
s

Note, here we can use the fact that individual ¢ being assigned to a split

sample s is independent of 7 choosing the interval with class value Z,({f).

An important requirement of the magnifying method is that we want
to ensure that in each interval in the working sample, there are directly
transferable observations. For each split sample, the expected number of
directly transferable observations is

N
E(NJ/VS> =E <Z 1{Z¢€CXVS}>
=1

WS
Cp

=NPr(Z e SS)/ fz(z)dz.

wS
Cp—1

(46)

Following from Equation (46), consider the following assumptions,

Assumption M1. Let Z be a continuous random variable with probability
density function fz(z) with S, N and cl follow the definitions above. We
require that all split samples will have non-zero respondents, Pr (Z € S;) > 0.

Assumption M1 ensures utilization of all split samples, i.e. each split sample
will have non-zero respondents. Similarly, for the shifting case, we need
assumption 1.a), which ensures that the number of respondents will always be
higher than the number of split samples, and assumption 1.b), that imposes a
mild assumption on the underlying distribution. (The support of the random

ws

variable is not disjoint, thus fCCJ{,S fz(2)dz > 0.) These assumptions allow us
b—1

to establish proposition 1, which establishes convergence in distribution.

Proposition 1. Under Assumptions 1a, 1b from the main text and M1,

1.
E(NYS) >0 (47)
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Pr (Zb:NbWS > 0> — 1. (48)

i=1
3.

Pr (Z)o <a) =Pr(Z <a) for any a € [a, a,] (49)
Proof:
The probabilities of the unobserved variable to fall into class C}V*,

s
Pr(Z € Cl'S) — Pr(Z € 8,) / ., T2 (50)
b

where, S; is the set for split sample s, and we used the fact that individual
1 being assigned to a split sample s is independent of i. This is satisfied if
the discretization schemes are randomly assigned to observations. To ensure
that in each interval from the working sample, there are directly transferable
observations, let us write

E Ng/VS - <Z 1{Z€CWS}>

WS
S

=NPr(Z e 83)/ fz(z)dz.

ws
Cp—

(51)

We can reformulate Equation (51) by considering the number of observations
up to a certain boundary point, rather than the number of observations in a
particular class. That is

Pr (E

. . 7 e7- CWS . CWS .
This gives the possibility to replace [ s fz(z)dz with [ts fz(2)dz. Since
b—1 0

ZNZWS] > 0> — 1. (52)

=1

this is a CDF, and hence a non-decreasing function, it effectively shows that
each interval has non-empty observations:

b N
E ' ws )y _ E '
E ( Nz ) —E ( 1{Zi<C,‘;VS}>
=1 =1 (53)

WS
b

=NPr(Z € SS)/ fz(z)dz.

WS
)
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Next, we need to show that this is an increasing function in C}V5. As N — oo,
under the assumption that Pr(Z € S;) = 1/S and S/N — d with d € (0,1)
— which is satisfied when S = dN,

b
lim E (Z NiWS> =NPr(Z; < C"9)

n—00 -
=1

(54)

ws
Cb

1
- /CXVS Fo(2)dz.

Note that the derivative with respect to C}'% is 1 f; (C[V¥) > 0, so the ex-
pected number of observations in each class is not 0. This completes our
proof in the univariate case. We leave the proof for multivariate cases to
future research.

4.1. Derivation for Estimation — using NDTQOs

Let us consider the placement of the non-directly transferable observa-
tions. We have seen that these observations belong to intervals, where the
interval widths do not converge to zero. One way to proceed is to remove
them completely so that they do not appear in the working sample. In prac-
tice, it seems that too many could fall into this category, resulting in a large
efficiency loss. Another approach is to use the information available for these
observations namely, the known boundary points for these values. Then we
could use all the directly transferable observations from the working sam-
ple to calculate specific conditional averages for all non-directly transferable
observations and replace them with those values. Let us denote a new vari-
able ZZ‘EL ; that represents all the directly transferable observations and the
replaced values for non-directly transferable observations.

For simplicity let us consider the case, when discretization happens with the
explanatory variable. In this case, we simply need to calculate the conditional
expectation that the underlying variable falls into the interval where NDTOs
are. The other two cases follow the same logic but use different conditioning.
Let us formalize the non-directly transferable observations as ZZ-(S) € C,,

where
co=JeY e ="
s,m b
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is the set for non-directly transferable observations from all split samples,
with x = 1,..., 2(S — 1). We can then replace Zl-(s) € C, with 7, which
denotes the sample conditional averages

N -1 N
b= (Z 1{z?TOecX}> > Lgzproecy ZTC. (55)
=1 i=1

NDTO
Zz'

Let us introduce as the variable which contains all the replaced values

with 7, VZZ»(S) € C,. This way we can create a new working sample as
ZALL .= [7DTO 7NDTOY " which contains information from both types of
observations.

Under the WLLN and the same assumptions needed for the magnifying
method, it is straightforward to show, 7, — E(Z|Z € C,), as N, S — oo.
Algorithm A8 shows how to replace NDTO values with the appropriate con-
ditional expectation estimators.

Algorithm A8 The magnifying method - creation of “ALL” working sample
. Let, ZAML .= {ZPTO}

:Set, m=1,s=1

B = Cy, then calculate 7, and expand the working sample as,

W N =

N
j=1

=~

: If s < S, then s := s+ 1 and go to Step 3.
: If s =5, then s :=1 and set m = m + 1 and go to Step 3.

ot

We can obtain the asymptotic standard errors of this estimator as if these
are large, the replacement might not be favorable, as it induces more un-
certainty relative to the potential loss of efficiency by not including all the
observations. To obtain the standard errors, one can think of 7, as an LS
estimator, regressing 1 (ZWS,pCy} O ZPTO Here 1 (zPTocc,y 18 a vector of
indicator variables, created by 2(S —1) indicator functions: It takes the value
of one for the directly transferable observations, which are within C,.° We

6The indicator variables are not independent of each other, while the non-transferable
observation intervals (Cy) overlap each other.
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can now write the following:

ZiDTO - Vxl{ZiDTOGCX} + s (57)

where v, stands for the vector of v,, V. The LS estimator of v, is

A

-1
l/X = ( /{ZiDTOECX}]'{ZiDTOECX}> 1I{ZDTO€CX}Z1'DT07 (58)

7

and under the standard LS assumptions, we can write
VNDPTO (i, —v ) X N (0,9,), (59)

where v, = E(Z|Z € C,),Vx. The variance of the OLS estimator is

-1
QX = V (T]Z) (1{{xK/ﬁgTo€CX}1{szgTOGCX}> . (60)
Using this result, we may decide whether to replace NDTOs or not.

5. Estimation with discretized regressors”

In this section, first, we analyze the bias and consistency of OLS estima-
tion for § in the univariate case, when the explanatory variable is discretized.
We investigate properties when N — oo and when M — oo. The last implies
we observe each value directly resulting in a consistent OLS estimator as we
outlined in Section 4 from the main text. These exercises are helpful to see
how these results generalize in the multiple linear regression case discussed
in Section 5.4. As a last subsection, we investigate the bias in the panel set
up in Section 5.6.

Recall the data-generating process is assumed to be
Y; = X3 + u; (61)
with the linear regression model using the discretized version of X; namely,

Y, = X 8" 4 u (62)

"We acknowledge the work of Baldzs Kertész from this section on the expected value
of B¢ g and on N and M (in-)consistency results.
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It is also assumed there is a known support [a;, a,] for X; with known bound-
aries (Cp,), and let v, from Equation (1) from the main text be any value
X take, typically the mid-point.

Let N,, be the number of observations in each class C,,, that is N, =
ZZ'N:1 1ix,ec,.}, where 1¢xcc,,y denotes the indicator function. When X has
a cumulative distribution (cdf) Fx(-),

N
E(N,,) =E (Z 1{Xiecm}>
=1

(63)
=N [ fx(x)dz
= NPI"(Cm_l <X=x< Cm)a

using the independence assumption. Note, when X has a uniform distribu-
tion, we have E(V,,) = N/M forallm=1,..., M.
The OLS estimator can expanded as,
o N *!
Bors = (X" X") (XY)

U (Zi\gl Yi) T U2 (vazl;fvfl Y;) Tt U (ZéiﬂfvaM+1 Yi)

Nyvi + Nov3 + -+ - + Npyvi,
vy (ngl BX; + u) + oy (ZZ'N:%_NMH BX; + u)
Niv? + -+ - 4+ Ny,
vy [Zﬁil Lix,ecy (BXi + Ui)} + -t [Zi]il Lix,ecy}(BX; + Ui)]
N2+ -+ + Ny
an\le Um [sz\il Lix,ecy (BXi + Uz)]
er\le Ny,

Using the expression above, we can get the following general formula for the
expected value of the OLS estimator,
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Z%:l Um [Zf\; lixeco (BX] + &) + Uz)}

E (56L3> =K

Z%:l Npvz,
. Z%:l Um |:ﬁ <Zz]\;1 1{Xi€Cm}X';< + le\il 1{X¢€Cm}£i> + Zi\;l ]‘{Xiecm}ui:|
) Z%:l Npvy,
M N * M N
= SE 2 =1 Vm 2z Lixiee,} X + BE D me1 Vm iz Lxiec)éi
Zf\n/lzl va%ﬁ” Z’r]gzl va?n
+E er\r/f:l Um Zf\il lixiec, i
Z%:l Npvz,
M N
= 8+ BE 2 om=1 Ym 2zt Lxiecn)Si
fozl Npvz,
ZMfl U’mNmUm
=P PR SAE : 64
o { Zr]\zle Nnvy, (64)

where the discretization error §; = X; — X/ for each observation by setting
the possible answer values at X*. The derivation above is based on the
disturbance term w; being independent of regressor X; and E(u;) = 0 for
all ¢ = 1,...,N. The last inference uses the fact that the errors &; have

the same conditional distribution over the class C,,, v™ 4 &|Cy, for all m =
1,...,M and i = 1,..., N. Importantly, the second term in Equation (64)
does not vanish in general, since v"™|C,, is not independent of N,,|C,,, v™[C,, /
1L Np|Cp nor E(&;|Cr,) = E(v™) = 0 (see Figure 3, right panel for illustrative
explanation). The former issue can be eliminated by conditioning on the
underlying distribution of X;. Conditional on the distribution X; and the
class C,,, the number of observations in the class and assuming that the
errors are independent of each other, N,,|X;,C,, L v™|X;,C,,, but knowing
the underlying distribution makes the problem trivial. Nonetheless, because
of both issues, the “naive” OLS estimator is biased.

Note that the uniform distribution, however, turns out to be a special
case. Let us assume that X; ~ U(aq;, a,) for all ¢ = 1,... N, then both of
the above disappear (see the left panel in Figure 3) if we are using the class
midpoints. The first problem is resolved, because, in the case of the uniform
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Figure 3: The difference between uniform (left panel) and general distributions (right
panel)

distribution, both the number of observations NNV,, in each class C,, and the
error term v™ are independent of the regressor’s X; distribution, while the
second problem does not appear trivially, since now the class midpoints are
proper estimates of the regressor’s X; expected value in the class C,,. From
Equation (64), we obtain that

A ZMf Uy Ny 0™
E( ; ): + BE{ Zm=1 — 3, 65
6OLS ﬂ ﬂ { 2%21 vagn B ( )
where v is a uniformly distributed random variable with zero expected
value, E(v™) = 0 for all m = 1,..., M. Hence, in the case of uniform

distribution, unlike for other distributions, the OLS is unbiased.

5.1. N (in)consistency

This subsection considers the large sample properties of the estimator.
First, assume that plimy_, Zfil(l{xiecm}ui) = 0, in other words, that the
class set selection is independent of the disturbance terms, and also that with
sample size N the number of classes M is fixed. Then
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Y B* y Z%:l Um [sz\; Lixec.) (BXi + Uz)]
1m = 1m
JI\)f—mo oLS JI\)/—ﬂ)o er\gzl Nm’l)?n
Zn]\le Um |:pth—>oo Zz]\il ]‘{XiECm}(ﬁXi + ul)]
Z%:l UTQn pth—>oo Nm
Zn]\;[:1 Um [plimNﬁoo B Zfi1 l{XiGCm}X’i:|
Z%:l /UTQH pth%oo Nm
M . N
Zm:l Um pth—)OO Zi:l 1{XieCm}Xi

= ) 66
6 Zr]\gzl U72n pth—>oo Nm ( )

Define X = vazl 1¢x,ec,,1Xi, then X™ sums the truncated version of the

original random variables X; on the class C,,, X,, 4 X;|Cpn, for all m =
1,..., M, therefore its asymptotic distribution can be calculated by applying
the Lindeberg-Levy Central Limit Theorem,

X" /Ny ~ N(E(X0), V(Xi)/Nim) .- (67)

The 32} g estimator is consistent if and only if the probability limit in Equa-
tion (66) equals S. To give a condition for consistency, first, we rewrite the
previous Equation (66) in terms of the error terms &;,

. (B* ﬁ) ﬁ (Zn]\f:1 Um [pth—mo Zfil 1{Xi€cm}Xi] - Z%:l UrQn plimN—mo Nm)
im —-08) =
JI\)Hoo ors SSM 02 plimy_,o Ny,
B Yy v [Plimy o S, Lxiee, (X = X7)]
R >t U Pl Ny

ﬂ 2717‘1/[:1 Um [pth—)oo Zz]\il l{XiECm}fi]

= AT
> m=1 Vn, Plimy_, oo Nip

, (68)

where the asymptotic distribution of the sum of errors in class C,,, {™ =
Zi]il 1¢x,ec,1éi, m=1,..., M, can be given by

€™ /Ny & XNy = 0 & N(E(X™) = 0y, V(X™) /Ny ). (69)
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_ plimy o 83y Um€™

plimy oo 3y 02N

_ plimy_,.. O(N)f 2%21 Um&™ /N
plimy_, ., O(N) er\::l vp,

_ Bt Vm Plimy o €7 /N,

plim (BELS — 6)

N—oo

W O(N)
D me1 U
_ B 1 U ABG) = 0} ) o 0
S (V) (70)

The last step in the above derivation can simply be obtained from the def-
inition of the plim operator, i.e., for any € > 0 given. Therefore, to obtain
the (in)consistency of the OLS estimator Bg; s in the number of observations
N, we only need to calculate the expected value of the truncated random
variable X,,, m = 1,..., M and check whether the expression (70) equals 0
to satisfy a sufficient condition.

plim ™ = E(X,,) — X, (71)
<= lim Pr(|¢" —{E(Xpn) = Xin}| > €) (72)

= lim Fen (=& + E(Xm) = Xpn) [1 = Fem (¢ + E(Xpn) = Xo)] = 0.

(73)

The convergence holds because, for any given § > 0, there is a threshold N,
for which the term in the limit becomes less than §. This can be seen from
Fem(-) being close to a degenerate distribution above a threshold number of
observations Ny, or intuitively since the variance of the sequence of random
variables £ collapses in N, its probability limit equals its expected value.

Let us apply these results to the uniform distribution. In this case, there is
no consistency issue because the class midpoints coincide with the expected
value of the truncated uniform random variable in each class, making the
expression (70) zero, hence the OLS estimator is consistent.

Note that the consistency of the OLS estimator is not guaranteed even in
the case of symmetric distributions and symmetric class boundaries. After
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Figure 4: The estimator is inconsistent even in case of symmetric distributions (see Equa-
tion (70)).

appropriate transformations (e.g., demeaning), it can be seen that the sign
of the differences between the expectation of the truncated random variables
X,, and the class midpoints is opposite to the sign of the class midpoints on
either side of the distribution, which implies negative overall asymptotic bias
in N (see Figure 4).

In the case of a (truncated) normal variable, for example, we need to
substitute the expected value of the truncated normal random variable X,
for each m = 1,..., M in the consistency formula (70). As a result, the
difference between the expectation and the class midpoints, in general, is not
zero for all m, hence the formula cannot be made arbitrarily small. Therefore,
the OLS estimator becomes inconsistent in V.

So far we have focused on the estimation of 5 in Equation (62). But how
about 7 It can be shown that the bias and inconsistency presented above
are contagious. Estimation of all parameters of a model is going to be biased
and inconsistent unless the measurement error and X are orthogonal (inde-
pendent), which is quite unlikely in practice. This is important to emphasize:
a single interval-type variable in a model is going to infect the estimation of
all variables of the model.

5.2. M Consistency

Let us see the case when N is fixed but M — oo. Now, we may have
some intervals that do not contain any observations, while others still do.
Omitting, however, empty intervals does not cause any bias because of our
iid assumption. Furthermore, while we increase the number of intervals,
the size of the intervals itself is likely to shrink and become so narrow
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that only one observation can fall into each. In the limit, we are going
to hit the observations with the interval boundaries. To see that, we de-
rive the consistency formula in the number of intervals M assuming that

plim,,; ., Z{m;cm;é(/),m:L...,M} Umi,, = 0, or with re-indexation plim,,_, Zfil U, Wi =
N ziu; = 0, which should hold in the sample and is a stronger assumption
i=1 ) p g D

than the usual plimy_, Zf\il Xiu; = 0:

—p

plim (B, — ) = plim Xt [vaﬂzl{Xiecm}(ﬁXi +u)|
o Moo > m=1 Nmvy,
Moo 2 fmiCm 0 m=1,.. 21y NV,
> tmcmtdm=t,...any Vm(BXi, + i)

= plim 5 —
M—o0 Z{mzcmyé@,mzl,...,M} Um

{Z{m:cm#@,mzl,..,,M} 'UmXim _ 1}

Z{mzcm;é(b,mzl,...,M} Ur2n
N
N o X
= plim —lej\lfv — — 1
M—o0 Zi:l U%%_
N .
_ 5 21‘:1 phmM—)oo UmiXi 1
Zi]\il plim,_, U?ni

N XX,
:ﬁ{zz—xl}

- B

= plim

M—o0

=0,

(74)
where the index i,, € {1,..., N} denotes observation i in class m (at the
beginning there might be several observations that belong to the same class
m), and index m; € {1,..., M} denotes the class m that contains observation
i (at the and of the derivation one class m includes only one observation
i). Note that the derivation does not depend on the distribution of the
explanatory variable X, so consistency in the number of classes M holds in
general. Let us also note, however, that this convergence in M is slow. Also,
as M — oo, the class sizes go to zero, and the smaller the class sizes the
smaller the bias.
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5.3. Some Remarks

The above results hold for much simpler cases as well. If instead of model
(62) we just take the simple sample average of X, X = >, X;/N, then
X*=3",X;/N is going to be a biased and inconsistent estimator of X.

The measurement error due to discretized variables, however, not only
induces a correlation between the error terms and the observed variables,
but it also induces a non-zero expected value for the disturbance terms of the
regression in (62). Consider a simple example where there is an unobserved
variable X; with an observed discretized version:

if < X; <c,
xp=34%  To=liea (75)
Vo if c < Xz < Cg,
and
Yi =X+ (76)
Using the discretized variable means:
Y, = X/ B+ (X, — X))B+u (77)

and

E[X; — X] =E(X;) — E(X})

:E(XZ) —E [Xl]_(CQ S Xz < Cl) + Xgl(cl S )(Z < Cg)] (78)
:]E(XZ> — U1 PI‘(CO < X; < Cl) — X5 PI‘(Cl < X; < Cg).

The last line above is not zero in general. Thus, it would induce a bias
in the estimator if the regression did not include an intercept. This result
generalizes naturally to variables with multiple class values.

5.4. Estimation in multiple linear regression

Let us generalise the problem and re-write it in matrix form. Consider
the following linear regression model:

y=XB+Wry+e, (79)

where X and W are N x K and N x J data matrices of the explanatory
variables, y is a IV x 1 vector containing the data of the dependent variable,
€ is a N x 1 vector of disturbance terms, and finally 8 and y are K x 1 and
J x 1 parameter vectors.

30



X is not observed, only its discretized version X* is. Define the M K x K
matrix as

vV, 0 ... ...
0O V, 0 O
= . _ . , (80)
0 Vg
where V; = (v;, . .. ,viM)/ contains the values for variable i. Let E = {ey;},
where k =1,... K and i = 1,..., N such that
1(cro < gy < Cr)
e <api < ¢
ek = (e = ;! ) : (81)

1(ekpr—1 < @pi < Ceur)

where zj,; denotes the value of the ¥ observation from the explanatory vari-
able x;,.

This implies E is a M K x N matrix since each entry ey; is a M x 1 vector.
Following the definition of X in the paper, we can rewrite X* = E'V.

5.5. The OLS Estimator
From Equation (79), consider the regression based on the observed data:

y=XB+Wy+(X-X"B+¢, (82)
then the OLS estimator for 8 is
B = (X*MxX*) "' X*Mxy, (83)

where Myw = I — W(W'W)"'W’ defines the usual residual maker. The
standard derivation shows that

B =(VEMwEV) ' VEMwXS + (VEMwE V)" VEMye. (84)

This implies OLS is unbiased if and only if (V' EMwE/ V) ' VEMwX =L
This allows us to investigate the bias analytically by examining the elements
in VEMwE'V and VEMwX.

To simplify the analysis, we assume for the time being the following:

MwX =X (85)
MwX* =X*. (86)
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In other words, we assume independence between X and W, as well as its
discretized version. This may appear to be a strong assumption but it does
allow us to see what is happening somewhat better. We relax this at a later
stage.

The OLS estimator in this case becomes:

B=(VEEV)'VEXS+ (VEEV) ' VEe. (87)

The OLS is unbiased if (V'EE'V)"' V'EX = I. Note that V’ and E are of
size K x MK and MK x N, respectively. This means V'EE'V are invertible
as long as N > K, which is a standard assumption in classical regression
analysis. Let us consider a typical element in V'EE'V first. Since V is non-
stochastic as it contains only all the pre-defined interval values, it is sufficient
to examine EE':

€11 ey; e1N (S €1 €K1
! / / /
EE = | en €k N S €L €L (88)
/ / /
[ €K1 €k exn] Lein €L €N

Note that each entry in E is a vector, so EE’ will result in a partition matrix
whose elements are the sums of the outer products of e;; and e;; for k,l =
1,...,K and i,j = 1,..., N. Specifically, let qi be a typical block element
in EE’, then

N
il = Z €ri€);- (89)

i—1
Let 1% = 1 (cgm_1 < 2ri < Chm), then the (m,n) element in qu, Gun is

N
S 1818 for myn = 1,..., M. Thus, E (EE/) exists if E (115) exists,
=1

E(15,17) = /f(l’k, xp)dwpdzy (90)
0

where f(xy, z;) denotes the joint distribution of z;, and z; and Q = [cgm_1, Crm] X
[Cin_1, C1n] defines the region for integration. Thus, N~1b,,, should converge
into Equation (90) under the usual WLLN.
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Following a similar method, let a be the (k,[) element in V'EX, then

N M
QA = Z Z Ukm]-%xli- (91)

i=1 m=1

Now,

M
§ : ki
UkmE 1 xlz

M
E kamlﬁifl}lz] =
m=1 m];l (92>
:kam/ o f (g, ) daday
m=1

where Qy = [Crm_1, Ckm] X Qx with Qx denotes the sample space of z; and
x;. Thus, N~tay; converge into Equation (92) under the usual WLLN.

In the case when Equations (85) and (86) do not hold, the analysis be-
comes more tedious algebraically, but it does not affect the result that OLS
is biased. Recall Equation (84), and let w;; be the (4, j) element in My for
1=1,...,Nand j = 1,...,J, then following the same argument as above,
EMwE’ can be expressed as a M x M block partition matrix with each
entry a K x K matrix. The typical (m,n) element in the (k,[) block is

Jrl = Z Z w,,] ].kz].lz (93)

7j=1 =1

with its expected value being

ZZ/wwf Tk, T3, W) dwpdw,dW, (94)

i=1 j=1

where W = (wy,...,wy), dW = Hdwi and Q = [Ckm—_1, Ckm]| X [Cln_1, Cin] X
Qw where Qw denotes the saurnpzle1 space of W. Note that w;; is a nonlin-
ear function of W, and so the condition of existence for Equation (94) is
complicated. However, under the assumption that the integral in Equation
(94) exits, then N~'gy should converge to Equation (94) under the usual
WLLN. It is also worth noting that E [MwX]| = E [Mw]| E [X] = E [X] and
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EMwX*] = E[Mw]E[X*] = E[X*] under the assumption of indepen-
dence, which reduces Equation (94) to Equation (90).
Again, following the same derivation as above, a typical element in VEMw X

is [
hkl = Z Z kalﬁuli, (95)
m=1 i=1
N
where u;; = waqu- Note that wuy; is the " residual of the regression of

v=1
X; on W. The expected value of hy, can be expressed as

M
kam/ uf(xr, v, W)dapdz,dW, (96)
m=1 Qm

where u; denotes the random variable corresponding to the ** column of
MwX and Q,, = [Ckm—1, Ckm] X Qx X Qx with Qx denotes the sample space
of W. Note that uv; = w; under the assumption of independence, which
reduces Equation (96) to Equation (92).

5.6. Extension to Panel Data

So far, we have dealt with cross-sectional data. Next, let us see what
changes if we have panel data at hand. We can extend our DGP based on
Equation (79), to

Yie = X, 8 + €, (97)

where X;; ~ fx,(a;,a,) denotes an individual distribution with mean p; for
i=1,...,N. Here we need to assume that fyx,(-) is stationary, so the distri-
bution may change over individual ¢ but not over time, ¢.

Now, the most important problem is identification. If the interval for
an individual does not change over the time periods covered, the individual
effects in the panel and the parameter associated with the class variable
cannot be identified separately. The within transformation would wipe out
the interval variable as well. When the interval does change over time, but
not much, then we are facing weak identification, i.e., in fact very little
information is available for identification, so the parameter estimates are
going to be highly unreliable. This is a likely scenario when M is small, for
example, M = 3 or M = 5.
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The bias of the panel data within the estimator can be easily shown. Let
us re-write Equation (79) in a panel data context without further control
variables W.

y =Dya+ X8+ [(X - X")B +¢€], (98)

where & = (a1, ...,ay) and Dy is a NT x N zero-one matrix that appropri-
ately selects the corresponding fixed effect elements to form a. The Within
estimator is .

By = (X*Mp,X*) ' X*Mp,y, (99)

or equivalently

By = (VEMp,E'V)"'V'EMp, X8 + (VEMp,E'V) 'V'EMp,e,
(100)
where
MDNy = MDNX*,B + MDN[(X — X*),B + E]. (101)

The Within estimator is biased as E(B;) # B, because Mp,E'V = Mp, X* #
Mp, X.

N

6. Split sampling and perception effect

To extend our method towards fixed effect type of estimators, let us dis-
cuss a further phenomenon that we call the perception effect. The perception
effect is relevant if the discretization happens through surveys. There is much
evidence in the behavioral literature that the answers to a question may de-
pend on the way the question is asked (see, e.g., Diamond and Hausman,
1994, Haisley et al., 2008 and Fox and Rottenstreich, 2003).% Note, that this
is present regardless of whether split sampling has been performed or not.
However, with split sampling, there is a way to tackle this issue, much akin
to the approach a similar problem has been dealt with in the panel data
literature.

8Comments by Botond Kd&szegi on this section are highly appreciated.
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6.1. Outcome variable

To sketch out the idea in the univariate case, let us define the perception
effect B, for split sample s, as

o it < Zi+ By < Y
Zir =91 (102)
ol if 01(5)—1 < Zi+Bs < cg\‘? .

Let Z; be the same quantity, but B; = 0, Vs, thus no perception effect. Z;“
and Z* denote the replaced observations in the working sample that derived
from ZF and Z'*, respectively. Following the construction of the working

sample, 3 )
77 =7+ B;. (103)
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For example, in the case of discretization happening with the outcome
variable, one can use a similar approach as outlined in Section 4.2 from the
main text, and use the redefined equation,

Y =Y + B, = BX; + ;. (104)
Re-write the above with matrix notation,
7+ TB =Xj +u, (105)

where B = (By,...,Bs) and T is a (N x S) zero-one matrix that extracts
the appropriate elements from B.

Note, the estimator for E (y|X € Dj) needs to be adjusted for the above
to hold if identification of B is based on the conditional expectation. The
main challenge is to keep track of the perception effect. This means we need
to identify each split sample and observation when estimating the conditional
averages. Specifically,

N'Y D 3T -E(yXeD)+Bi=0,(1) , (106)

XeDy,XEs

where NV; is the number of observations in the partitioned interval D;.
Now, the estimation of 8 can be done in the spirit of a fixed effect esti-
mator. Define the usual residual maker, My = Iy — T (T'T) " T, then

~ ~ ~\ -1 .
B = (X’MTX> X' My (107)

is a consistent estimator of 8 given the results presented in this paper and
similar arguments for the consistency of the standard fixed effect estimator
in the panel data literature (see, e.g., Matyas 2024).

6.2. Ezxplanatory variable

Let us continue when the explanatory variable is discretized. The dis-
cretization of Xj, is the same as defined in Equitation 102, with By percep-
tion effect for split sample s. Let X;* = X* + B, denote the observations in
the working sample that derived from X and X;*, respectively. The model
with perception effects is,

Y, = BX* +u; = BZF + BBy + u; . (108)
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Extension to multiple linear regressions, requires specifying Bx the percep-
tion effect matrix with S x K dimensions, that allows for different effects for
each split sample s and variable £ in X. Rewrite in matrix form results in

y = X" +DBxS +u, (109)

where D is a N x S zero-one matrix that extracts the appropriate elements
from Bx.

We need to modify the replacement estimator k for the above to hold.
We need to keep track of the perception effects, thus from which split sample
each observation comes from when estimating the conditional averages. This
implies,

-1 R
Ry = ! / %
e = <1{XGC£§),XES}1{Xecfﬁ>,x65}> Lixec® xea X - (110)
As SN — oo
ke = vee (E [X|X € CF)) + Bx]) +0,(1) (111)

where vec(+) vectorize the conditional expectations similarly as in Appendix
B.1. Note that to identify Bx, we require variation along s and k, thus indi-
vidual ¢ shall face different split sample discretization for different variables.
This is a mild condition and can be satisfied if the survey is constructed
accordingly.

Now, the estimation of 8 can be done in the spirit of a fixed effect esti-
mator. Define the usual residual maker, Mp = Iy — D (D'D) " D', then

R y N
B = <X* MDX*> X*Mpy (112)

is a consistent estimator of B following the similar argument.

Perhaps a more interesting question is the presence of perception effects
over different m. In principle, this can also be incorporated by replacing By
with By, fors=1,...,Sandm =1,..., M. Therefore, this particular setup
does not just allow for perception effects due to different split samples, but
rather, it provides a framework to investigate different types of perception
effects. This would be an interesting avenue for future research in this area.
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6.3. Both variables

Similarly, as before, let us define the observed discretized variables with
perception effects in the univariate case,

Y* =Y +By X*=X!+By. (113)
The model without further controls is,
Vit = BX7 (114)
that is equivalent to

Y + By = X} + BBx + u;

) ~ (115)
Y;* ZBXZ*—FﬁBx—By—FUZ

Equation (115) is interesting, as it allows for different perception effects in
both Y; and X; variables in the univariate case. However, in such a setup,
the parameters can not be identified in general. To show this, let us consider
the matrix formulation,

v+ TBy = X*,B +DBxB +u

o (116)

where By = (Byy,..., By,sy)/. A unique solution for 8 exists if and only if
T is orthogonal to D. If so, one can use the corresponding residual maker

A ol ot -1 . ’ ~
Mrp = MpMp, that vields in 3 — (X* MTDX*) X*Mqpy*. Note
however this assumption requires a careful survey design. Lastly, note that

when constructing ¥, and ¥y, one needs to keep track of the split sample
as well to ensure convergence.

6.4. Test for perception effect

It is theoretically possible to test the impacts of the perception effects on
the estimator. Since B as defined in Equation (107) is consistent regardless
of the presence of perception effects. As,

j=(XX) Xy (117)
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is consistent only in the absence of the perception effects or if the effects
are uncorrelated with X, then under the usual regularity conditions, the test
statistic is

N A\ / “ ~ -1 /. ~\ a
(8-5) [var (8-8)] (8-5) “x2(x). (118)
The exact regularity conditions and the construction of the test statistic
would depend on the nature of the perception effect. For example, the case
where B is fixed would be different from the case where B is a random vector.

It would also appear that some assumptions on B are required to compute
the test statistics. This is another interesting avenue for future research.

7. Further Monte Carlo evidence

We extend the Monte Carlo simulations in five different ways. The basic
setup is the same as in Section 5.1 from the main text, and we change each
time one parameter compared to the basic setup. First, we investigate the
effect of sample size on our shifting method, and how the magnitude of the
bias changes when we use N = 1,000. As a second exercise, we investigate
how the bias changes if the generated distributions are symmetric. As a
third exercise, we check how the bias changes if instead of M = 5 we use
only M = 3 intervals representing ’low-mid-high’ categories. As the last
exercise, we show some results on how the bias vanishes as we increase N
and S, and the inconsistency of the alternative(s). All the following tables
show the Monte Carlo average bias (or distortion) of B from g = 0.5. In
parenthesis, we report the Monte Carlo standard deviation of the estimated
parameter.

7.1. Ezplanatory variable

First, we investigate the case, when X is discretized, hence we only ob-
serve X/.

7.1.1. Moderate sample size
For moderate sample size set N = 1,000. Table 1 shows the results which
are similar to the results with V= 10,000 as reported in the paper.
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Normal Logistic Log-Normal Uniform Exponential Weibull
Mid-point regression -0.0251  -0.0100 -0.0170 0.0003 0.0009 -0.0414
(0.0175) (0.0143) (0.0159) (0.0126) (0.033) (0.0229)
Shifting (S = 10) -0.0002  0.0001 -0.0005 0.0002 0.0008 -0.0004
(0.0179) (0.0140) (0.0155) (0.0120) (0.0287) (0.0228)
Table 1: Monte Carlo average bias and standard deviation with moderate sample size,
N = 1,000, when discretization happens to the explanatory variable
Shifting method always outperforms the alternatives, except in the case of
uniform and exponential, where there is no bias or small.
7.1.2. Symmetric boundaries
Next, we investigate symmetric boundary cases. We set the domain of the
explanatory variable to a; = —2,a, = 2 and keep ¢; generated in the same
way. For the log-normal, exponential, and weibull cases, we truncate at 3
and subtract 1 from the generated distribution.
Normal Logistic Log-Normal Uniform Exponential Weibull
Mid-point regression -0.0312  -0.0228 -0.0051 -0.0169 -0.0015 -0.0172
(0.0067) (0.0062) (0.0092) (0.006) (0.0285) (0.0174)
Shifting (S = 10) 0.0001  -0.0001 0.0002 0.0000 0.0006 0.0002
(0.0066) (0.0062) (0.0087) (0.0059) (0.0242) (0.0157)

Table 2: Monte Carlo average bias and standard deviation with symmetric boundary
points: a; = —2,a, = 2, when discretization happens to the explanatory variable

In this case the bias is even more severe for the mid-point regression than in
the assymetric case. This relates to the distance of the midpoints and the
actual excepted values within the intervals. Shifting performs in this setting
well and the bias vanishes.

7.1.3. Number of intervals (M)

Another question is how the number of intervals (M) affects the bias. In
this exercise, we investigated the M = 3 case, where interval defines (known)
low-mid-high ranges. In general, the bias increases for the methods, however,
it shows up in a larger standard deviation.
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Normal Logistic Log-Normal Uniform Exponential Weibull
Mid-point regression -0.0252  -0.0101 -0.0174 0.0002 0.0005 -0.0422
(0.0057) (0.0046) (0.0051) (0.0040) (0.0102) (0.0073)
Shifting (S = 10) 0.0002  0.0001 0.0000 0.0002 0.0005 0.0002
(0.0056) (0.0044) (0.0049) (0.0038) (0.009) (0.0072)

Table 3: Monte Carlo average bias and standard deviation with small number of interval
options, M = 3, when discretization happens to the explanatory variable

7.1.4. Convergence in N

Table 4 shows the (asymptotic) reduction in the bias with the split sampling
method. We use now only normal distribution’s setup for ¢;. The shifting
method decreases the bias towards zero, but one needs higher N and S as
well. Mid-point regression remains biased regardless of N.

N =1,000 | N =10,000 | N = 100,000

Midpoint regression -0.1053 -0.105 -0.1044

(0.0521) (0.0166) (0.0052)

g_3 -0.0252 -0.0269 -0.0259

o (0.0610) (0.0193) (0.0059)

g_s5 -0.0158 -0.0162 -0.0155

B (0.0594) (0.0188) (0.0060)

S —10 -0.0115 -0.0101 -0.0097

s N (0.0586) (0.0189) (0.0058)
Shifting

g _ 95 -0.0085 -0.0073 -0.0067

- (0.0587) (0.0188) (0.0058)

=50 -0.0066 -0.0053 -0.0049

N (0.0577) (0.0189) (0.0058)

S — 100 -0.0048 -0.0041 -0.0037

o (0.0579) (0.0186) (0.0058)

Table 4: Bias reduction for split sampling methods: different sample sizes and number of
split samples, when discretization happens to the explanatory variable

7.2. Outcome variable

In the following, we provide further evidence on the bias reduction, when
discretization happens on the left-hand side, thus to the outcome variable Y;.
Notes: In the case of “Set identification” T shows that we can only esti-
mate the lower and upper boundaries for the valid parameter set. We report
these bounds subtracted with the true parameter, therefore it should give a
(close) interval around zero. For ordered choice models * shows we report
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the distortion from the true g is reported. Ordered probit and logit models’
maximum likelihood parameters do not aim to recover the true g parameter,
therefore it is not appropriate to call it bias.

7.2.1. Moderate sample size

First, we investigate the magnitude of the bias, when the sample size is
moderate, namely N = 1,000. Table 5 shows the results which are similar
to the results with N = 10,000 as reported in the paper.

Normal Logistic Log-Normal Uniform Exponential Weibull
Set identification’ [-1.1,1.15] [-1.09,1.15] [-1.09,1.16] [-1.07,1.17] [-1.06,1.18] [—1.09,1.15]
(0.06),(0.07) (0.08),(0.08) (0.07),(0.07) (0.09),(0.09) (0.08),(0.09) (0.05),(0.06)
Ordered probit* 0.1978 0.0690 0.2138 0.0181 0.0965 0.4484
(0.0810) (0.0797) (0.0827) (0.0763) (0.0795) (0.0908)
Ordered logit* 0.6523 0.3828 0.6967 0.2419 0.4309 1.2109
© (0.1479) (0.1431) (0.1561) (0.1364) (0.1455) (0.1682)
Interval regression 0.0254 0.0329 0.0398 0.0512 0.0638 0.0396
| (0.0618) (0.0784) (0.0694) (0.0882) (0.0825) (0.0505)
Midpoint regression 0.0209 0.0293 0.0310 0.0453 0.2029 0.0275
’ (0.0643) (0.0786) (0.0733) (0.0895) (0.0426) (0.0526)
Shifting (S = 10) -0.0043 -0.0021 -0.0036 -0.0014 -0.0019 -0.0019
(0.0611) (0.0758) (0.0685) (0.0869) (0.0389) (0.0475)

Table 5: Monte Carlo average bias and standard deviation with moderate sample size,
N = 1,000, when discretization happens to the outcome variable

Shifting method always outperforms the alternatives.

7.2.2. Symmetric boundaries

Next, we investigate symmetric boundary cases. We set the domain of the
outcome variable to a; = —3, a,, = 3 and keep X; generated in the same way.
g; is generated/truncated such that its lower and upper bound is —2 and
2. In the normal, logistic, and uniform cases, it means the lower and upper
bounds are —2 and 2. For the log-normal, exponential, and weibull cases, we
truncate at 4 and subtract 2 from the generated distribution.
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Normal Logistic Log-Normal Uniform Exponential Weibull
Set identification! | (CLAL L8] [~L15,L10] [-1.09,116] [~L07,1.17] [-106,119] [~1.09, L.15]
(0.02),(0.02) (0.02),(0.02) (0.02),(0.02) (0.03),(0.03) (0.03),(0.03) (0.02),(0.02)
Ordered probit* 0.0890 0.0029 0.2085 0.0158 0.0986 0.4461
(0.0252) (0.0243) (0.0262) (0.0234) (0.0241) (0.0295)
Ordered logit* 0.4513 0.3198 0.6862 0.2379 0.4338 1.2085
(0.0446) (0.0427) (0.0499) (0.0422) (0.044) (0.0546)
Interval regression 0.0085 -0.0267 0.0371 0.0491 0.0663 0.0397
’ o (0.022) (0.0234) (0.0221) (0.0271) (0.0249) (0.0166)
Midpoint regression 0.0070 0.0240 0.0362 0.0490 0.2077 0.0314
(0.0211) (0.0242) (0.0216) (0.0273) (0.0128) (0.0157)
Shifting (5 = 10) -0.0001 0.0004 -0.0001 -0.0007 -0.0015 -0.0001
(0.0199) (0.0232) (0.0204) (0.0262) (0.0115) (0.0140)

Table 6: Monte Carlo average bias and standard deviation with symmetric boundary
points: a; = —3, a, = 3, when discretization happens to the outcome variable

As we expected the maximum likelihood methods, have a closer fit to the as-
sumed distribution the distortion is somewhat smaller in the case of ordered
probit model®. This is the case with the normal and logistic distributions for
the disturbance term. However, the distortion remains with the same mag-
nitude for all the other misspecified cases. The shifting method outperforms
all other methods.

7.2.83. Number of intervals (M)

We investigated the M = 3 case, where interval defines (known) low-mid-high
ranges. In general, the bias increases for the methods. Interesting exceptions
are interval regression and midpoint regression, where the results become
more volatile: in some cases, they give better results, while in others even
worse. The shifting method gives fairly accurate estimates.

9Note that ordered probit and logit uses different scaling (depending on the assumed
distribution), which results in different parameter estimates. In our case it means ordered
logit has higher average distortions than ordered probit, but this is only a matter of scaling.
One can map one to the other with the scaling factor, BML ., ~ BME % 0.25/0.3989. This
is why we use the term distortion rather than bias for these methods.
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Normal Logistic Log-Normal Uniform Exponential Weibull
Set identification’ [-1.83,1.90] [-1.85,1.88] [—1.85,1.89] [-1.87,1.87] [—1.89,1.85] [—1.81,1.93]
(0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.03),(0.03) (0.02),(0.02)
Ordered probit* 0.1062 -0.0220 0.0197 -0.1028 -0.0752 0.2347
(0.0272) (0.0266) (0.0278) (0.0250) (0.0253) (0.0302)
Ordered logit* 0.5193 0.3220 0.3916 0.1700 0.2169 0.7246
© (0.0462) (0.0457) (0.0472) (0.0423) (0.0428) (0.0509)
Interval regression 0.0124 0.0124 0.0122 -0.0044 -0.0243 -0.0061
- (0.0224) (0.0281) (0.0268) (0.0306) (0.0280) (0.0200)
Midpoint regression 0.0336 0.0168 0.0229 -0.0011 -0.2026 0.0647
(0.0233) (0.0274) (0.0267) (0.0307) (0.0170) (0.0216)
Shifting (S = 10) -0.0274 -0.0114 -0.0009 -0.0027 0.0011 -0.0008
(0.0237) (0.0256) (0.0226) (0.0277) (0.0135) (0.0151)

Table 7: Monte Carlo average bias and standard deviation with small number of interval
options, M = 3, when discretization happens to the outcome variable

Also note that with the shifting method, the average bias is within 1 stan-
dard deviation, which is not true for the other methods, especially when the
underlying distribution is exponential or weibull.

7.2.4. Convergence in N

Table 8 shows the (asymptotic) reduction in the bias with the split sam-
pling methods. We use now only normal distribution’s setup for ¢;. As
Table 8 suggests, as we increase the number of observations the bias vanishes
for the shifting method. Also if we increase the number of split samples
the bias tends to decrease. It is important to highlight the other methods’
bias/distortion remains the same as we increase the number of observations,
therefore they give inconsistent estimates.
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N =1,000 | N=10,000 | N = 100,000
[ [, 115 [—1.1,1.15] [—1.1,1.15]

Set identification” | ) 06)'(0.07)) | ((0.02).(0.02)) | ((0.01),(0.01))
. 0.1978 0.1971 0.1968
Ordered probit (0.0810) (0.0256) (0.0080)
» 0.6523 0.6509 0.6502
Ordered logit (0.1479) (0.0464) (0.0146)
Intorval regression 0.0254 0.0268 0.0266
(0.0618) (0.0198) (0.0062)
Midpoiat regression 0.0257 0.0251 0.0251
(0.0635) (0.0195) (0.0061)
o3 -0.0019 0.0014 -0.0008
- (0.0635) (0.0197) (0.0062)
G_s -0.0016 -0.0007 -0.0005
- (0.0614) (0.0189) (0.0060)
S 10 -0.0067 -0.0025 -0.0006
Shiftin - (0.0605) (0.0190) (0.0059)
R 0.0052 0.0008 -0.0001
- (0.0602) (0.0185) (0.0057)
- -0.0027 -0.0011 -0.0004
- (0.0587) (0.0185) (0.0058)
S — 100 -0.0006 -0.0002 -0.0002
- (0.0596) (0.0183) (0.0057)

Table 8: Bias reduction for split sampling methods: different sample sizes and number of
split samples, when discretization happens to the outcome variable

7.8. Both side

In our final simulations, we investigate the properties of bias when both
outcome and explanatory variables are discretized.

7.3.1. Moderate sample size
For moderate sample size set N = 1,000. Table 9 shows the results which

are similar to the pattern with N = 10,000 as reported in the paper.

Normal Logistic Log-Normal Uniform Exponential Weibull
Mid-point regression -0.0856  -0.0797 -0.0759 -0.0647 0.0809 -0.0771
(0.0571) (0.0691) (0.0616) (0.0790) (0.0377) (0.0456)
Shifting (S = 10) 0.0139  0.0094 0.0042 0.0064 0.0001 0.0035
(0.0607) (0.0768) (0.0668) (0.0862) (0.0364) (0.0452)

Table 9: Monte Carlo average bias and standard deviation with moderate sample size,
N = 1,000, when discretization happens on both sides
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Shifting method always outperforms the alternative mid-point regression.

7.8.2. Symmetric boundaries

For the symmetric boundary case, we set the domain of the disturbance
term to a; = —2,a, = 2 and keep X, generated in the same way. Now
the outcome variable’s domain is between —3 and 3. For the log-normal,
exponential, and weibull cases, we truncate at 3 and subtract 1 from the
generated distribution.

Normal Logistic Log-Normal Uniform Exponential Weibull
Midopoint reeression -0.0975  -0.0838 -0.0752 -0.0635 0.0797 -0.0759
P & (0.0189) (0.0217) (0.019) (0.0243) (0.0116) (0.0137)
Shifting (S = 10) 0.0088 0.0075 0.0056 0.0057 0.0026 0.0047
&= (0.0205) (0.0237)  (0.02211)  (0.0264) (0.0118) (0.0142)
Table 10: Monte Carlo average bias and standard deviation with symmetric boundary
points: a; = —2, a,, = 2, when discretization happens on both sides
Results are similar to the reported table in the main paper.
7.8.8. Number of intervals (M)
We investigated the M = 3 case, where interval defines (known) low-mid-
high ranges. In general, the bias increases for the methods. Shifting gives
closer results to zero bias.
Normal Logistic Log-Normal Uniform Exponential Weibull
Midopoint reeression -0.1998  -0.2091 -0.2221 -0.2143 -0.3552 -0.2012
P & (0.0177) (0.0210) (0.0198) (0.0235) (0.0108) (0.0154)
Shifting (S = 10) -0.1062  -0.0168 -0.0123 0.0142 -0.0049 0.0092
&0 = (0.0269) (0.0301) (0.0257) (0.0304) (0.0137) (0.0162)

Table 11: Monte Carlo average bias and standard deviation with small number of interval
options, M = 3, when discretization happens on both sides

7.8.4. Convergence in N

Table 12 shows the (asymptotic) reduction in the bias with the split sampling
methods. We use now only normal distribution’s setup for ¢;. Here the bias
is not decreasing as quickly as in the other cases.
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N =1,000 | N = 10,000 | N = 100,000

Midpoint regression | 01002 ~0.1547 ~0.1543
(0.0517) (0.0162) (0.0051)

o3 -0.0694 -0.0609 -0.0597

(0.0633) (0.0205) (0.0064)

G_s -0.0543 -0.0515 -0.0505

(0.0606) (0.0198) (0.0062)

§—10 -0.0539 -0.0481 -0.0463

Shifting (0.0594) (0.0194) (0.0059)
5o -0.0506 -0.0471 -0.0462

(0.0593) (0.0188) (0.0060)

S50 -0.0520 -0.0482 -0.0470

(0.0570) (0.0186) (0.0058)

S — 100 -0.0520 -0.0487 -0.0470

(0.0564) (0.0183) (0.0057)

Table 12: Bias reduction for split sampling methods: different sample sizes and number
of split samples, when discretization happens on both sides

8. Gender wage gap in detail

To demonstrate how our method works in practice, we need a dataset
where we can measure the difference between the parameter estimated on a
non-discretized variable and the parameter(s) using some discretized version
of the data. The Australian Tax Office’s (ATO) individual sample files record
income and some basic socio-economic variables for a 2% sample of the whole
population.'® To contrast this non-discretized income variable with practice,
we use different discretization processes. We employ a simple equally dis-
tanced discretization method and a specific method, which is used in the
Household, Income, and Labour Dynamics in Australia (HILDA) Survey '!.
HILDA is an annual survey and dataset, which is well known and widely
used in Australia for economic research 2. This way we can estimate param-
eters on the complete sample and the parameter estimates on “what if it is
observed through a discretization process”.

WOFor details see ATO’s website: https://www.ato.gov.au/
about-ato/research-and-statistics/in-detail/taxation-statistics/
taxation-statistics-previous-editions/taxation-statistics-2016-17 .

"Uhttps://melbourneinstitute.unimelb.edu.au/hilda

125ee:https://melbourneinstitute.unimelb.edu.au/hilda/publications
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8.1. Data

The Australian Tax Office (ATO) dataset is a confidentialised 2% sample
of the whole population. It records individual income tax returns for var-
ious income for separate years. We use data from 2016-17, which contains
overall 277,202 records. Our outcome variable is yearly earned wage in the
Australian dollar. Our parameter of interest is the coefficient for the gender
variable. Further variables are,

e Expected age for each age group

— We have calculated the expected age conditional on the age groups.
This is necessary, while the ATO dataset only uses age groups:
0 — 20,20 — 24,25 — 29,30 — 34,35 — 39,40 — 44,45 — 49,50 —
54,55 — 59,60 — 64,65 — 69, 70+. To circumvent this discretiza-
tion process, we are using the Australian Bureau of Statistics on
demographic statistics!®, which contains the number of males and
female for each age. Based on this we calculate the conditional
expected values for the year 2016-17, conditioning on gender.

occupation code (as a series of dummies)

spouse (dummy)

region (dummies)

lodgment method (dummy - via tax agent or self-prepared return)
e private health insurance (PHI) indicator (dummy)

We restrict our sample to the working population (older than 25 and
younger than 65 years old) and we remove individuals whose wage is lower
than the 2017 minimum wage (weekly minimum wage was 627.7 AUD) and
whose wage is more than 225.000AUD (that is the top 1%). Table 13 shows
basic descriptive statistics on the used variables in our sample.

13File,31010D0002,01906, available at https://www.abs.gov.au/AUSSTATS/abs@
.nsf/DetailsPage/3101.0Jun%20201970penDocument
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Mean Median ‘ Std ‘ Min Max
wage 77,808 68,864 35,369 | 34,981 22,4951
total income 83,069 71,337 55,609 | -13,5989 | 3,001,331
exp. age 46.77 47.02 10.78 27.00 61.95
Positive income Total income> 0 Total income< 0
0.9998 0.0002
Gender Male Female
0.5598 0.4402
Spouse No Yes
0.3867 0.6133
LM Tax agent Self preparer
0.7304 0.2696
No Yes
PHI 0.3562 0.6438
0 1 2 3 4
Oce. codes* 0.0005 0.1537 ‘ 0.2759 | 0.1320 ‘ 0.0774
5 6 7 8 9
0.1392 ‘ 0.0485 ‘ 0.0681 | 0.0714 ‘ 0.0333
New South Wales
Capital | Other Urban | R.H.U. | R.L.U. Rural
0.1971 0.0412 0.0388 | 0.0169 ‘ 0.0250
Queensland
Capital | Other Urban | R.H.U. | R.L.U. Rural
0.0970 0.0522 0.0131 ‘ 0.0081 ‘ 0.0290
Tasmania
Capital | Other Urban [ R.H.U. ‘ R.L.U. ‘ Rural
. 0.0055 0.0026 0.0026 | 0.0018 0.0061
Region. codes’ —
Victoria
Capital | Other Urban | R.H.U. | R.L.U. Rural
0.1830 0.0128 0.0193 | 0.0120 ‘ 0.0249
Western Australia
Capital | Other Urban | R.H.U. | R.L.U. Rural
0.0716 0.0030 0.0159 | 0.0066 ‘ 0.0125
South Australia
ACT Capital R.H.U. | R.L.U. Rural
0.0218 0.0472 0.0060 | 0.0043 0.0079
Northern Territory Overseas/
Capital R.H.U. R.L.U. invalid
0.0057 0.0033 0.0026 0.0026

*Occupation codes: 0 - Occupation not listed,
ified, 1 - Managers, 2 - Professionals, 3 - Technicians and Trades
Workers, 4 - Community and Personal Service Workers, 5 - Cler-
ical and Administrative Workers, 6 - Sales workers, 7 - Machinery
operators and drivers, 8 - Labourers, 9 - Consultants, apprentices,
and type not specified or not listed
t: R.H.U: regional high urbanization, R.L.U: regional low urbaniza-

tion.

Occupation not spec-

Table 13: Summary table for used variables
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8.2. Discretization process and model results

The discretization process influences the magnitude of the bias. We have
fixed the lower bound to zero and the upper bound to 225, 000 for the wages.
We use two different discretization processes:

e M = 10 with equal distances for mid-point regression and shifting as
it was the closer in our reported main result in Table 1 from the main
text.

e HILDA’s household questionnaire, which uses M = 1241 categories in
2017 1 —9.999, 10.000 — 19.999, 20.000 — 29.999, 30.000 — 39.999,
40.000 — 49.999, 50.000 — 59.999, 60.000 — 79.999, 80.000 — 99.999,
100.000 — 124.999, 125.000 — 149.999, 150.000 — 199.999 and 200.000
or more. Three extra options are added: negative or zero refused, and
don’t know.

We need to note that HILDA is aiming for total income and not for wages/salaries,
thus we discretize the income jointly with the wages. For the shifting method,
we use equal distances and check for S = 10 during the modeling.

Our outcome variable is yearly wage in Australian dollar and our param-
eter of interest is the coefficient for the gender dummy. We compare the
conditional average outcome based on gender, using three different linear
models, all of them estimated by OLS,

e Model 1: y; = a + 8 x gender; + ¢;
o Model 2: y; = a + 3 x gender; + viage; + y2ag€; + &

e Model 3: adding further controls for design 2, occupation code (dum-
mies), having a spouse (dummy), region (dummies), and whether hav-
ing private health insurance (dummy)

e Model 4: Model 3 and interaction terms of occupation and age

“https://melbourneinstitute.unimelb.edu.au/__data/assets/pdf_file/0005/
2409674/HouseholdQuestionnaireW17M. pdf
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Discretization ‘ Model 1 Model 2 Model 3 Model 4

Non-discretized -0.2027 -0.2025 -0.2277 -0.2261
(0.0023) (0.0023) (0.0023) (0.0023)
HILDA -0.2012  -0.2010 -0.2258  -0.2242
0.0023 0.0023 0.0023 0.0023
Mid-point regression -0.2124  -0.2122  -0.2381 -0.2364
(0.0025) (0.0024) (0.0025) (0.0025)
Shifting method (S=10) | -0.2040 -0.2038 -0.2296  -0.2280
0.0024 0.0024 0.0024 0.0024

Non-discretized row uses the actual wage data. HILDA wuses its spectal 13-
category discretization outlined above. Mid-point regression and shifting method
use M = 10 intervals. Shifting uses S = 10 split samples. Standard errors are
in parenthesis.

Table 14: Estimated 3 parameters for gender dummy with different model specifications

Table 14 shows that the shifting method gives close and statistically non-
distinguishable estimates of the non-discretized parameter value. HILDA
performs similarly well, while mid-point regression gives statistically different
parameter values at 5% in almost all cases.
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